Hibridisasi Metode Fuzzy K-Nearest Neighbor dengan Metode Modified Particle Swarm Optimization Pada Pengklasifikasian Penyakit Tanaman Kedelai
Keywords:
fuzzy k-nearest neighbor, modified particle swarm optimization, Soybean datasetAbstract
Fuzzy k-Nearest Neighbor (Fk-NN) merupakan salah satu metode klasifikasi yang powerfull. Kehadiran konsep fuzzy pada metode ini berhasil meningkatkan kinerjanya pada hampir semua masalah klasifikasi. Kelemahan utama FkNN adalah sulitnya menentukan parameter-parameternya. Parameter tersebut adalah jumlah tetangga (k) dan kekuatan fuzzy (m). Kedua parameter tersebut sangat sensitif. Hal tersebut menyulitkan penentuan nilai m dan k, sehingga mengakibatkan Fk-NN sulit dikontrol karena tidak ada teori-teori atau panduan yang dapat menyimpulkan berapa seharusnya nilai m dan k yang tepat. Penelitian ini menghadirkan Particle Swarm Optimization (PSO) untuk menentukan nilai k dan m yang terbaik. Model yang diusulkan pada penelitian ini diuji pada Dataset Soybean. Data uji tersebut telah distandardisasi oleh UCI Machine Learning Repository yang banyak diterapan pada masalah klasifikasi. Penerapan MPSO pada penentuan parameter-parameter Fk-NN diharapkan mampu meningkatkan nilai performa klasifikasi. Berdasarkan eksperimen yang telah dilakukan mengindikasikan bahwa model yang ditawarkan pada penelitan ini menghasilkan performa klasifikasi yang lebih baik dibandingkan dengan model Fk-NN saja. Pada bagian akhir dilakukan perbandingan superioritas model penelitian dengan model klasifikasi yang lain seperti IBK dan Decision Tree. Model penelitian ini memiliki tingkat performa yang lebih baik.