Application of Data Mining for Clustering of Foreign Tourist Visits Based on Arrival Entrance
DOI:
10.33395/sinkron.v7i1.11217Keywords:
Tourism, Covid-19, Indonesia, Data Mining, K-means, ClusteringAbstract
Indonesia is a country with unique tourist destinations from each region. The tourism sector has an impact on the Indonesian economy which can encourage economic growth and increase the country's foreign exchange from foreign tourist visits. Tourism growth in Indonesia was disrupted due to the Covid-19 pandemic with the imposition of major social restrictions which resulted in a decrease in tourist visits and the paralysis of the tourism sector. Based on the problems described above, the authors are interested in conducting research in order to classify data on foreign tourist arrivals based on the entrance of foreign tourist arrivals. This research uses data mining method and K-Means Algorithm to form 5 clusters. The 5 clusters are divided into groups of tourist entrances which are categorized as very high (C1), high (C2), moderate (C3), low (C4) and very low (C5). In forming the 5 clusters, the researchers used Ms. Excel and Rapidminer 10.1 to process data. The results of this study obtained that the tourist entrance group was categorized as very high (C1) with 1 data, high (C2) with 1 data, moderate (C3) with 1 data, low (C4) with 1 data and very low (C5). ) that is with 21 data. This study aims to provide suggestions and future considerations to the Ministry of Tourism and Creative Economy of the Republic of Indonesia (Kemenparekraf) to carry out policies so that the Indonesian tourism sector can return to normal.
Downloads
References
Aditya, A., Jovian, I., & Sari, B. N. (2020). Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. Jurnal Media Informatika Budidarma, 4(1), 51. https://doi.org/10.30865/mib.v4i1.1784
Alkhairi, P., & Windarto, A. P. (2019). Penerapan K-Means Cluster pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara. Seminar Nasional Teknologi Komputer & Sains, 762–767.
Darnita, Y., Toyib, R., & Kurniawan, Y. (2020). Penerapan Metode K-Means Clustering Pada Aplikasi Android Pada Tanaman Obat Herbal. Pseudocode, 7(2), 105–114. https://doi.org/10.33369/pseudocode.7.2.18-27
Fatmawati, K., & Windarto, A. P. (2018). Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi. Computer Engineering, Science and System Journal, 3(2), 173. https://doi.org/10.24114/cess.v3i2.9661
Ferdiansyah, H., Suganda, D., Novianti, E., & Khadijah, U. L. (2020). PENGELOLAAN MITIGASI KRISIS PARIWISATA AKIBAT PANDEMI COVID-19 DALAM MENGHADAPI FASE NEW NORMAL (Studi Kasus Di Desa Wisata Nglanggeran Yogyakarta). Open Journal Systems, 15(3), 4133–4135.
Gustientiedina, G., Adiya, M. H., & Desnelita, Y. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan. Jurnal Nasional Teknologi Dan Sistem Informasi, 5(1), 17–24. https://doi.org/10.25077/teknosi.v5i1.2019.17-24
Hablum, R., Khairan, A., & Rosihan, R. (2019). Clustering Hasil Tangkap Ikan Di Pelabuhan Perikanan Nusantara (Ppn) Ternate Menggunakan Algoritma K-Means. JIKO (Jurnal Informatika Dan Komputer), 2(1), 26–33. https://doi.org/10.33387/jiko.v2i1.1053
Indraputra, R. A., & Fitriana, R. (2020). K-Means Clustering Data COVID-19. Jurnal Teknik Industri, 10(3), 3.
Kadarisman, A. (2021). Government public relations dalam pengembangan pariwisata masa pandemi COVID-19 di Geopark Ciletuh. PRofesi Humas Jurnal Ilmiah Ilmu Hubungan Masyarakat, 5(2), 270. https://doi.org/10.24198/prh.v5i2.29800
Nana, D., & Elin, H. (2018). Memilih Metode Penelitian Yang Tepat: Bagi Penelitian Bidang Ilmu Manajemen. Jurnal Ilmu Manajemen, 5(1), 288. Retrieved from https://jurnal.unigal.ac.id/index.php/ekonologi/article/view/1359
Rizki Munanda, S. A. (2019). PENGARUH KUNJUNGAN WISATAWAN MANCANEGARA, RATA-RATA PENGELUARAN DAN TINGKAT HUNIAN HOTEL TERHADAP PENDAPATAN INDONESIA PADA SEKTOR PARIWISATA. Kajian Ekonomi Dan Pembangunan, 1, 37–48.
Rusdiansyah, R., Rasyid, H. Al, & Sosrowidigdo, S. (2021). Implementation of address recording management using the K-Means clustering classification algorithm in Kebayoran District, DKI Jakarta. SinkrOn, 5(2), 184–191. https://doi.org/10.33395/sinkron.v5i2.10855
Saragih, A. T. R., Sembiring, A. S., & Sayuthi, M. (2018). Penerapan Metode Clustering K-Means untuk Proses Seleksi Calon Peserta Lomba MTQ. Pelita Informatika, 17(April), 117–122. Retrieved from https://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/download/776/704
Sari, R. W., Wanto, A., & Windarto, A. P. (2018). Implementasi Rapidminer Dengan Metode K-Means (Study Kasus: Imunisasi Campak Pada Balita Berdasarkan Provinsi). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 2(1), 224–230. https://doi.org/10.30865/komik.v2i1.930
Sibuea, M. L., & Safta, A. (2017). Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustring. Jurteksi, 4(1), 85–92. https://doi.org/10.33330/jurteksi.v4i1.28
Suprihatin, W. (2020). Analisis Perilaku Konsumen Wisatawan Era Pandemi Covid-19 ( Studi Kasus Pariwisata di Nusa Tenggara Barat ). Jurnal Bestari, 19(1), 56–66.
Toresa, D. (2020). Implementasi K-Means Terhadap Penyebaran Penyakit Tbc Di Riau Menggunakan Rapid Miner. JUTIM (Jurnal Teknik Informatika Musirawas), 5(1), 35–42. https://doi.org/10.32767/jutim.v5i1.809
Zenker, S., & Kock, F. (2020). The coronavirus pandemic – A critical discussion of a tourism research agenda. Tourism Management, 81(May). https://doi.org/10.1016/j.tourman.2020.104164
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2022 Handhy Nur Prabowo, Resad Setyadi, Wahyu Adi Prabowo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.