Comparison of Main Characteristics of Food Insecurity Using Classification Tree and Random Forest

Authors

  • E Ramadhani Syiah Kuala University, Banda Aceh, Indonesia
  • B Sartono Bogor Agriculture University, Bogor
  • A F Hadi Bogor Agriculture University, Bogor, Indonesia
  • S ‘Ufa Syiah Kuala University, Banda Aceh, Indonesia
  • T Akhdansyah Syiah Kuala University, Banda Aceh, Indonesia

DOI:

10.33395/sinkron.v7i4.11852

Abstract

Since the emerging of big data era, the information and data are grown rapidly. It requires us to have ability to extract the knowledge and information that consisted in this explosion of the data. One of way that can be used for this purpose is by using machine learning method. One of purpose of machine learning implementation is to conduct classification analysis and to identify variable importance that contribute in the research. It’s conducted the comparative study between two machine learning classification methods named classification tree and random forest method. This study is implemented on Indonesian Socioeconomic Survey (SUSENAS) 2020 in Aceh Province. The purpose of the study is to identify the optimum method between both and to identify the characteristics of food insecure household. The optimum method obtained by comparing the AUC value. The results obtained is random forest outperformed classification tree with the AUC value of random forest method is 0,718 and classification tree method is 0,668. The rank of variable importance of the optimum method is the type of cooking fuel used in the household, the area of house floor, education level of head of household, number of savers in a household, and the type of house floor.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ballard, T. J., & Cafiero, A. W. K. and C. (2013). The Food Insecurity Experience Scale: Developing s Global Standard for Monitoring Hunger Worldwide. October, 1–58.

BPS. (2006). ingkat Kemiskinan di Indonesia.

BPS. (2007). Analisis dan Penghitungan Tingkat Kemiskinan Tahun 2007.

Breiman, L. (1993). Classification and Regression Tree. Chapman and Hall.

Breiman, L, Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. Wadsworth and Brooks.

Breiman, Leo. (2001). Random Forest. Machine Learning, 45(1), 5–32. https://doi.org/10.1007/978-3-030-62008-0_35

Burnaev, E., Erofeev, P., & Papanov, A. (2015). Influence of Resampling on Accuracy of Imbalanced Classification. Eight International Conference on Machine Vision.

Cecilia, A. (2015). Population food security assessment: A methodological approach. Agricultural Economics and Rural Development—Realities and perspectives for Romania. 6th Edition of the International Symposium, November 2015, Bucharest, The Research Institute for Agricultural Economy and Rural Development (ICEADR), 2–8.

Damayanti, H. O., Perencanaan, B., Daerah, P., & Pati, K. (2018). Jurnal Litbang Vol. XIV, No.1, Juni 2018: 15-26. XIV(1), 15–26.

Ethem, A. (2020). Introduction to Machine Learning (fourth edi). MIT Press.

Ghatak, A. (2017). Machine Learning with R. In Machine Learning with R. https://doi.org/10.1007/978-981-10-6808-9

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Data mining concepts and techniques. In Proceedings - 2013 International Conference on Machine Intelligence Research and Advancement, ICMIRA 2013 (Third Edit). Morgan Kaufmann. https://doi.org/10.1109/ICMIRA.2013.45

Hapsari, N. I., & Rudiarto, I. (2017). Faktor-Faktor yang Mempengaruhi Kerawanan dan Ketahanan Pangan dan Implikasi Kebijakannya di Kabupaten Rembang. Jurnal Wilayah dan Lingkungan, 5(2), 125. https://doi.org/10.14710/jwl.5.2.125-140

Irawan, H., Sartono, B., & Erfiani. (2019). Faktor-faktor Rumah Tangga Yang Mencirikan Tingkat Kerawanan Pangan.

Lewis, J. . (2000). An introduction to Classification and Regression Analysis (CART).

Magaña-Lemus, D., Ishdorj, A., Rosson, C. P., & Lara-Álvarez, J. (2016). Determinants of Household Food Insecurity in Mexico. Agricultural and Food Economics, 4(1). https://doi.org/10.1186/s40100-016-0054-9

Million, M., & Muche, M. (2020). FACTORS DETERMING THE FOOD INSECURITY STATUS OF RURAL HOUSEHOLD IN MANNA WOREDA OF JIMMA ZONE , ETHIOPIA . FACTORES QUE DETERMINAN EL ESTADO DE INSEGURIDAD ALIMENTARIA DEL HOGAR RURAL EN LA ZONA MANA WOREDA. 8(X), 1–15.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of Machine Learning. The MIT Press.

PETUNJUK TEKNIS: PENGENTASAN DAERAH RENTAN RAWAN PANGAN/PERTANIAN KELUARGA TAHUN 2021. (2021). BADAN KETAHANAN PANGAN KEMENTERIAN PERTANIAN.

Pujilestari, T., & Haryanto, T. (2020). Peran Perempuan dalam Meningkatkan Ketahanan Pangan Rumah Tangga di Provinsi Nusa Tenggara Barat Triana. Media Trend, 15(2), 319–332.

Pusat Penelitian Kebijakan Pendidikan dan Kebudayaan. (2017). Kajian Implementasi Program Indonesia Pintar. 17.

Rahmansyah, Z., Senjawati, N. Z., & Juarini. (2020). ANALISIS KETAHANAN PANGAN RUMAH TANGGAMISKIN BERDASARKAN PANGSA PENGELUARAN PANGAN DANKONSUMSI ENERGI DI DESA GIRIREJO KECAMATAN IMOGIRIKABUPATEN BANTUL. 21(Juni), 68–78.

Sulemana, I., Anarfo, E. B., & Quartey, P. (2019). International remittances and household food security in Sub-Saharan Africa. Migration and Development, 8(2), 264–280. https://doi.org/10.1080/21632324.2018.1560926

Sunarti, E. (2006). No Title. Institut Pertanian Bogor.

Umniyyah, T. (2018). Analisis Faktor-faktor yang Mempengaruhi Ketahanan Pangan Rumah Tangga Penderita Tuberkulosis di Wilayah Non Pesisir Surabaya. Institut Teknologi Sepuluh Nopember.

Wardani, A. S. (2018). Determinan Ketahanan Pangan Dan Gizi Rumah Tangga Petani Indonesia Di Kawasan Pedesaan. Jurnal Ekonomi, January, 153. https://doi.org/10.13140/RG.2.2.14278.98881

WFP, & Pangan, D. K. (2015). Peta Ketahanan dan Kerentanan Pangan Indonesia 2015: Versi Rangkuman.

Zani, S., Marco, R., & Maurizio, V. (2005). Data Analysis, Classification and The Forward Search: Proceedings of The Meeting of The Classification and Data Analysis Group (CLADAG) of The Italian Statistical Society (eds (Ed.)). Springer Science & Business Media.

Downloads


Crossmark Updates

How to Cite

Ramadhani, E., Sartono, B. ., Hadi, A. F., ‘Ufa, S. ., & Akhdansyah, T. (2022). Comparison of Main Characteristics of Food Insecurity Using Classification Tree and Random Forest . Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2486-2497. https://doi.org/10.33395/sinkron.v7i4.11852