Comparison of the Sentiment Analysis Model's Code Complexity and Processing Time

Sentiment analysis for tolerance and religious moderation in Indonesia: A Case Study

Authors

  • Luh Gede Surya Kartika Universitas Hindu Negeri I Gusti Bagus Sugriwa Denpasar https://orcid.org/0000-0001-9895-1418
  • Putu Kussa Laksana Utama Universitas Hindu Negeri I Gusti Bagus Sugriwa Denpasar
  • I Dewa Gede Budiastawa Universitas Hindu Negeri I Gusti Bagus Sugriwa Denpasar
  • Komang Rinartha Institut Teknologi dan Bisnis STIKOM Bali

DOI:

10.33395/sinkron.v8i1.11894

Keywords:

Algorithm Comparison, Sentiment Analysis, Code Complexity, computation time, Moderation, Tollerance

Abstract

Text processing, which includes sentiment analysis, obviously demands a lot of resources. The extent to which resources are used to promote environmental conservation is directly impacted by code complexity or computational time. Twitter users' responses on the Indonesian Language of religious moderation and tolerance are used to test the model. The phases of doing the research include determining the research's needs, gathering data, text preprocessing (case folding, tokenizing, stopword removal, and stemming), word weighting with TF/IDF, and classification with Multinomial Naive Bayes (MNB) and Support Vector Machine (SVM), validation, and the last step was calculation of the code complexity and computation time. The validation results showed that the performance of the two models was still low, with an average accuracy of 75.5%. Based on computation time, SVM has a faster computational time than MNB. However, when compared in terms of the code complexity, the Cyclomatic Complexity in both models was the same because both models used existing libraries in Python Interpreter, and the complexity of the libraries cannot be calculated directly. Based on the Raw Metrics, it can be seen that MNB and SVM not significantly different in LOC, LLOC, and SLOC. It was evident that SVM has a greater Halstead Complexity than SVM in all measures when comparing the program code of MNB and SVM. Particularly on programming effort and volume metrics, SVM required more bits to run than an MNB program, and it also required more mental effort to convert a prepared SVM algorithm into a program than an MNB.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Apriani, R., & Gustian, D. (2019). Analisis Sentimen Dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia. Jurnal Rekayasa Teknologi Nusa Putra, 6(1), 54–62.

Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944

Calero, C., & Piattini, M. (2015). Introduction to Green in Software Engineering. https://doi.org/10.1007/978-3-319-08581-4

Fitri, E., Yuliani, Y., Rosyida, S., & Gata, W. (2020). Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine. Jurnal Transformatika, 18(1), 71. https://doi.org/10.26623/transformatika.v18i1.2317

Gunawan, B., Pratiwi, H. S., & Pratama, E. E. (2018). Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 4(2), 113. https://doi.org/10.26418/jp.v4i2.27526

Huda Ovirianti, N., Zarlis, M., & Mawengkang, H. (2022). Support Vector Machine Using A Classification Algorithm. Jurnal Dan Penelitian Teknik Informatika, 7(3). https://doi.org/10.33395/sinkron.v7i3

Kamil, A. S., & Kurniastuti, I. (2020). Evaluation of Interview Application based on Radon System. Kresna Social Science and Humanities Research, 1, 1–7. https://doi.org/10.30874/ksshr.62

Laurensz, B., & Sediyono, E. (2021). Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(2), 118–123. https://doi.org/10.22146/jnteti.v10i2.1421

Lestari, K. F., & Lazuardi, L. (2018). Analisis Sentimen pada Twitter Mengenai Kampanye Pemberian Imunisasi Measles Rubella di Indonesia. 3(3), 300.

Lestari, S., & Saepudin, S. (2021). Analisis Sentimen Vaksin Sinovac Pada Twitter Menggunakan Algoritma Naive Bayes. SISMATIK (Seminar Nasional Sistem Informasi Dan Manajemen Informatika), 163–170.

Malhotra, M. P. (2015). Python Based Software for Calculating Cyclomatic Complexity. International Journal of Innovative Science, Engineering & Technology, 2(3), 546–549.

Nayak, J., Naik, B., & Behera, H. S. (2015). A Comprehensive Survey on Support Vector Machine in Data Mining Tasks: Applications & Challenges. International Journal of Database Theory and Application, 8(1), 169–186. https://doi.org/10.14257/ijdta.2015.8.1.18

Nurjannah, M., Hamdani, & Fitri Astuti, I. (2013). Penerapan Algoritma Term Frequency-Inverse Document Frequency (TF-IDF) Untuk Text Mining. Jurnal Informatika Mulawarman, 8(3), 110–113.

Qeis, M. I. (2015). Aplikasi Wordcloud sebagai Alat Bantu Analisis Wacana. International Conference on Language, Culture, and Society (ICLCS) - LIPI. https://www.researchgate.net/publication/316736417

Rosid, M. A., Fitrani, A. S., Astutik, I. R. I., Mulloh, N. I., & Gozali, H. A. (2020). Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi. IOP Conference Series: Materials Science and Engineering, 874(1). https://doi.org/10.1088/1757-899X/874/1/012017

Sari, F. V., & Wibowo, A. (2019). Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi. 10(2), 681–686.

Singgalen, Y. A. (2021). Pemilihan Metode dan Algoritma dalam Analisis Sentimen di Media Sosial : Sistematic Literature Review. 3(2), 278–302.

sklearn.metrics.precision_recall_fscore_support — scikit-learn 1.1.2 documentation. (n.d.). Retrieved October 6, 2022, from https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support

Sodik, F., & Kharisudin, I. (2021). Analisis Sentimen dengan SVM , Naive Bayes dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter. Prisma, 4, 628–634.

Welcome to Radon’s documentation! — Radon 4.1.0 documentation. (n.d.). Retrieved September 18, 2022, from https://radon.readthedocs.io/en/latest/index.html#

Yusliani, N., Aruda, S. A. Q., Marieska, M. D., Saputra, D. M., & Abdiansah. (2022). The effect of Chi-Square Feature Selection on Question Classification using Multinomial Naïve Bayes. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(4), 2430–2436.

Downloads


Crossmark Updates

How to Cite

Kartika, L. G. S., Utama, P. K. L., Budiastawa, I. D. G., & Rinartha, K. . (2023). Comparison of the Sentiment Analysis Model’s Code Complexity and Processing Time: Sentiment analysis for tolerance and religious moderation in Indonesia: A Case Study. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(1), 109-118. https://doi.org/10.33395/sinkron.v8i1.11894