Implementation Opinion Mining For Extraction Of Opinion Learning In University
DOI:
10.33395/sinkron.v8i2.11994Keywords:
Data Mining, Extraction, Machine Learning, Opinion, Sentiment Analysis.Abstract
Opinion mining is a field of Natural Language Processing (NLP) that is used to carry out the process of extracting and processing textual data which functions to obtain information through sentiment analysis from a document in the form of text, among others, to detect attitudes towards objects or people. Sub-processes in opinion mining can use documents of subjectivity, opinion orientation, and detection targets to find out the data used as sentiment analysis, sentiment analysis aims to assess emotions, attitudes, opinions, and evaluations conveyed by a speaker or writer towards a product or towards a public figure. In this study, an opinion mining system was developed to analyze learning in college. The methodology used is quantitative descriptive, while the processing of sentiment analysis data uses Azure machine learning. Sentiment analysis results are very good at assessing opinions or opinions and emotions, and attitudes conveyed by someone. The learning process is the main element that must run well so that competency and achievement in learning can be maximally conveyed to students. Documents that identified opinions were then classified into negative, neutral, and positive opinions based on the results. In general, it can be concluded that the value obtained by sentiment analysis using Azure Machine Learning tools is quite good, judging from the results of a positive class of 0.79 and a neutral class of 0.53. The use of cleaning and labeling techniques and other classifications is still very possible to use. To get a better accuracy value.
Downloads
References
A. Nisa, E. D. (2019). Analisis Sentimen Menggunakan Naive Bayes Classifier dengan Chi-Square Feature Selection Terhadap Penyedia Layanan Telekomunikasi. eProceeding Eng., vol. 6, no. 2, (pp. 8650–8659).
Alifia, R. P. (2020). Sentiment Analysis for Customer Review. Journal of Information System Engineering and Business Intelligenc , 1-8.
Budi, H, Y., R, F., R, J., & D. T, R. (2019). Facebook Analysis of Community Sentiment on 2019 Indonesian. The Fifth Information Systems International Conference, (pp. 715-722).
D. Alita, Y. F. (2020). Implementasi Algoritma Multiclass SVM pada Opini Publik Berbahasa Indonesia di Twitter. J. Tekno Kompak, vol. 14, no. 2 , 86–91.
Devika, M, S. C., & Amal, G. (2016). Sentiment Analysis:A Comparative Study On Different Approaches. Fourth International Conference on Recent Trends in Computer Science & Engineering, (pp. 44 – 49).
Dharmapatni, P. &. ( 2020). Penerapan Algoritma Support Vector Machine Dalam Sentimen Analisis Terkait Kenaikan Tarif BPJS Kesehatan. Jurnal BITe. Vol 2 No 2. , 1-8.
Falahah dan Nur, A. D. (2015). Pengembangan Aplikasi Sentiment Analysis Menggunakan Metode Naive Bayes. Seminar Nasioonal Sistem Informasi Indonesia, (pp. 201-211).
I. D. I, I. A. (2016). Analisis Sentimen Media Sosial Opini Ujian Nasional Berbasis Komputer menggunakan Metoda Naive Bayes. J. Electr. Electron. Eng., vol. 1, no. , 38–45.
Joshi, M. &. ( 2014). Opinion Mining For Sentiment Data Classification. . International Journal of Research in Information Technology, 3(1) , 1-13.
Khan, A. Z. (2015). Combining Lexicon-based and Learning-based Methods for Twitter Sentiment Analysis. International Journal of Electronics, Communication and Soft Computing Science & Engineering (IJECSCSE) , 12-22.
Latifah, E. F. (2018). Perbandingan Kinerja Machine Learning Berbasis Algoritma Support Vector Machine dan Naive Bayes (Studi Kasus: Data Tanggapan Mengenai Traveloka Melalui Media Sosial Twitter) .
Ling, J. N. (2014). Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Dengan Seleksi Fitur Chi Square. E-Jurnal Matematika, 3(3). , 50-62.
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures On Human Language Technologies, 5(1) , 1-167.
Oka, J. L. (2014). Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Dengan Seleksi Fitur Chi Square. E-Jurnal Mat., vol. 3, no. 3 , 92–99.
Pamungkas, E. W. (2016). An Experimental Study of Lexicon-Based Sentiment Analysis on Bahasa Indonesia. Proceeding of The 6th International Annual Engineering Seminar (INAES), (pp. 110-121).
Patel, T. U. (2015). A. Sentiment Analysis of Parents Feedback for Educational Institutes. . International Journal of Innovative and Emerging Research in Engineering, 2. , 21-32.
Rosandy, T. (2016). Perbandingan Metode Naive Bayes Classifier Dengan Metode Decision Tree (c4.5) Untuk Menganalisa Kelancaran Pembiayaan (Study Kasus : KSPPS / BMT AL-FADHILA. J. Teknol. Inf. Magister Darmajaya, vol. 2, no. 01 , 52– 62.
Saniati, M. A. (2016). Analisis Sentimen Tweet Menggunakan. J. Tek., vol. 10, no. 2 , 23–28.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2022 Mariana Purba, Yadi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.