COMPARISON OF K-N EAREST NEIGHBOR AND NAÏVE BAYES ALGORITHMS FOR PREDICTION OF APTIKOM MEMBERSHIP ACTIVITY EXTENSION IN 2023

Authors

  • Fathia Alisha Fauzia STMIK LIKMI, Bandung, Indonesia
  • Kannisa Adjani STMIK LIKMI, Bandung, Indonesia
  • Christina Juliane STMIK LIKMI, Bandung, Indonesia

DOI:

10.33395/sinkron.v8i2.12081

Keywords:

APTIKOM , K-NN, Naïve Bayes, Algorithms, Predictions

Abstract

So far APTIKOM as the Informatics and Computer Higher Education Association has provided many opportunities for registered members to participate in discussions on the development of science among fellow association members, access to various professional experts, as well as technical and non-technical guidelines in the field of education. With the various opportunities above, it is hoped that all members will support the activities of each member who has joined or has just joined so that a good association can be created. This study aims to find out about the problems that occur in APTIKOM, namely members who have registered as members but rarely renew their membership which results in data accumulation in APTIKOM. This research method uses the k-nn and naïve Bayes algorithms by using data sets from 2012 to 2022. The dataset used is APTIKOM member data and has 5 attributes namely name, gender, last education, institution and validation secret. To calculate the research test using a rapid miner. The purpose of this study is to predict whether in the following year there will be a membership renewal process for all APTIKOM members who have been recorded from 2012 to 2022. Furthermore, the results of this study have a different level of accuracy. Where for k-nn the resulting accuracy is 94.00% and for the result of naïve Bayes is 91.35%.

GS Cited Analysis

Downloads

Download data is not yet available.

References

U. Rahardja, N. Lutfiani, and M. S. Alpansuri, “Pemanfaatan Google Formulir Sebagai Sistem Pendaftaran Anggota Pada Website Asosiasi,” vol. 2, no. 4, 2018.

H. Budiman, “PERAN TEKNOLOGI INFORMASI DAN KOMUNIKASI DALAM PENDIDIKAN,” Al-Tadzkiyyah: Jurnal Pendidikan Islam, vol. 8, no. E-ISSN: 2528-2476, pp. 75–92, 2017.

A. R. Dayat and L. Angriani, “PEMANFAATAN MODEL-VIEW-CONTROLLER (MVC) DALAM RANCANG BANGUN SISTEM INFORMASI RAKORNAS APTIKOM 2017,” 2017.

M. Hasan, “Prediksi Tingkat Kelancaran Pembayaran Kredit Bank Menggunakan Algoritma Naïve Bayes Berbasis Forward Selection,” ILKOM Jurnal Ilmiah, vol. 9, no. 3, pp. 317–324, 2017, doi: 10.33096/ilkom.v9i3.163.317-324.

R. Rinawati, “Penentuan Penilaian Kredit Menggunakan Metode Naive Bayes Berbasis Particle Swarm Optimization,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 1, no. 1, p. 48, 2017, doi: 10.30645/j-sakti.v1i1.28.

D. Gustian, I. Suciati, S. Saepudin, P. Studi Sistem Informasi, U. Nusa Putra Sukabumi, and I. Jl Raya Cibolang Kaler No, “SISTEM PAKAR DENGAN ALGORITMA NAIVE BAYES UNTUK PREDIKSI HASIL PRODUKSI AYAM BROILER PLASMA (STUDI KASUS : PT.SEKAWAN SINAR SURYA).”

W. Jember, R. K. Midiarso, R. Umilasari, S. Pd, and M. Si, “PEMANFAATAN ALGORITMA NAIVE BAYES UNTUK KLASIFIKASI STATUS ALUMNI SMK BUSTANUL ULUM AL-GHAZALI,” 2022.

W. I. Rahayu, C. Prianto, and E. A. Novi, “PERBANDINGAN ALGORITMA K-MEANS DANNAÏVE BAYES UNTUK MEMPREDIKSI PRIORITASPEMBAYARAN TAGIHAN RUMAH SAKITBERDASARKAN TINGKAT KEPENTINGAN PADAPT. PERTAMINA (PERSERO,” Jurnal Teknik Informatika, vol. 1, no. 2, pp. 22–29, 2021.

M. Translated, “BAGIAN SATU : DASAR-DASAR DATA MINING,” pp. 1–11.

S. Narulita, A. Tigor Oktaga, and I. Susanti, “Media Aplikom Pengujian Model Prediksi Menggunakan Metode Data Mining Classification Decision Tree Untuk Penentuan Peminatan Peserta Didik,” Media Aplikom, vol. 13, no. 2, pp. 89–95, 2021, doi: 10.33488/1.ma.2.1.305.

A. Yandi Saputra and Y. Primadasa, “Penerapan Teknik Klasifikasi Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbour Implementation of Classification Method to Predict Student Graduation Using K-Nearest Neighbor Algorithm,” Techno.Com, vol. 17, no. 4, p. 9, 2018.

S. Wahyuningsih, D. R. Utari, U. B. Luhur, D. Tree, and K. Validation, “Perbandingan Metode K-Nearest Neighbor , Naïve Bayes dan Decision Tree untuk Prediksi Kelayakan Pemberian Kredit,” pp. 8–9, 2018.

R. Palupi, D. A. Yulianna, and S. S. Winarsih, “Analisa Perbandingan Rumus Haversine Dan Rumus Euclidean Berbasis Sistem Informasi Geografis Menggunakan Metode Independent Sample t-Test,” JITU : Journal Informatic Technology And Communication, vol. 5, no. 1, pp. 40–47, Jul. 2021, doi: 10.36596/jitu.v5i1.494.

N. R. Indraswari, P. S. Informatika, U. M. Surakarta, Y. I. Kurniawan, P. S. Informatika, and U. M. Surakarta, “Aplikasi prediksi usia kelahiran dengan metode naive bayes,” vol. 9, no. 1, pp. 129–138, 2018.

I. Kurniawan and A. Susanto, “Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden ( Pilpres ) 2019,” pp. 1–10, 2019, doi: 10.30864/eksplora.v9i1.237.

Downloads


Crossmark Updates

How to Cite

Fauzia, F. A. ., Adjani, K., & Juliane, C. (2023). COMPARISON OF K-N EAREST NEIGHBOR AND NAÏVE BAYES ALGORITHMS FOR PREDICTION OF APTIKOM MEMBERSHIP ACTIVITY EXTENSION IN 2023. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(2), 700-707. https://doi.org/10.33395/sinkron.v8i2.12081