Zero Knowledge Proof for SNAP (Standar Nasional OPEN API Pembayaran) in Indonesia


  • Moehammad Ramadhoni Universitas Pradita
  • Handri Santoso Universitas Pradita




authentication, gnark, SNAP, zero knowledge proof, ZK-SNARK


SNAP (Standar Nasional OPEN API Pembayaran) is an implementation of open banking for encouraging digital transformation in the banking industry. SNAP was submitted by several sub-working groups formed jointly by ASPI and the Bank of Indonesia. In the document Pedoman Tata Kelola (Bank of Indonesia, n.d.), there is already a customer data protection mechanism between the bank, the owner of Open API, and the user of Open API. However, there is no data protection process carried out by consumers so third parties, that use the Open API of the bank, do not need to know the customer's data. Based on the web3 protocol, users can store data and transmit only in encrypted form which can only be opened by calculating the data with a pre-agreed smart contract. Banks can work like a decentralized network on web3, where the process of calculating proof and witness is carried out by the bank. Proof and witness are calculated using a zero-knowledge proof protocol, making it difficult to duplicate. For this reason, we propose a new architecture using smart contracts between banks and customers using the ZK-SNARK method. Therefore, there is no significant performance difference between using ZK-SNARK and without ZK-SNARK in the API call process.

GS Cited Analysis


Download data is not yet available.


Bank of Indonesia (n.d) Pedoman Tata Kelola SNAP. Retrieved May 01, 2023, from

Bank of Indonesia (n.d) Standar Data Spesifikasi Teknis SNAP. Retrieved May 01, 2023, from

Bank of Indonesia (n.d) Standar Teknis Keamanan SNAP. Retrieved May 01, 2023, from

Barreto, P. S. L. M., & Naehrig, M. (2006). Pairing-friendly elliptic curves of prime order. In B. Preneel & S. Tavares (Eds.), Selected Areas in Cryptography (Vol. 3897, pp. 319–331). Springer Berlin Heidelberg.

Bin Uzayr, S. (2022a). Mastering golang: A beginner’s guide (1st ed.). CRC Press.

Bin Uzayr, S. (2022b). Golang: The ultimate guide (1st ed.). CRC Press.

Blum, M., Feldman, P., & Micali, S. (1988). Non-interactive zero-knowledge and its applications. Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing - STOC ’88, 103–112.

Buterik, Vitalik. (2021) An approximate introduction to how zk-SNARKs are possible. Retrieved May 06, 2023, from

Dwivedi, A. D., Singh, R., Ghosh, U., Mukkamala, R. R., Tolba, A., & Said, O. (2022). Privacy preserving authentication system based on non-interactive zero knowledge proof suitable for Internet of Things. Journal of Ambient Intelligence and Humanized Computing, 13(10), 4639–4649.

El Housni, Y., & Guillevic, A. (2022). Families of snark-friendly 2-chains of elliptic curves. In O. Dunkelman & S. Dziembowski (Eds.), Advances in Cryptology – EUROCRYPT 2022 (Vol. 13276, pp. 367–396). Springer International Publishing.

Ethereum.Org .(n.d). Zero-knowledge proofs. Retrieved May 06, 2023, from

Gaba, G. S., Hedabou, M., Kumar, P., Braeken, A., Liyanage, M., & Alazab, M. (2022). Zero knowledge proofs based authenticated key agreement protocol for sustainable healthcare. Sustainable Cities and Society, 80, 103766.

Goldwasser, S., Micali, S., & Rackoff, C. (1985). The knowledge complexity of interactive proof-systems. Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing - STOC ’85, 291–304.

Groth, J. (2006). Simulation-sound nizk proofs for a practical language and constant size group signatures. In X. Lai & K. Chen (Eds.), Advances in Cryptology – ASIACRYPT 2006 (Vol. 4284, pp. 444–459). Springer Berlin Heidelberg.

Groth, J. (2009). Linear algebra with sub-linear zero-knowledge arguments. In S. Halevi (Ed.), Advances in Cryptology—CRYPTO 2009 (Vol. 5677, pp. 192–208). Springer Berlin Heidelberg.

Groth, J. (2016). On the size of pairing-based non-interactive arguments. In M. Fischlin & J.-S. Coron (Eds.), Advances in Cryptology – EUROCRYPT 2016 (Vol. 9666, pp. 305–326). Springer Berlin Heidelberg.

Groth, J., Ostrovsky, R., & Sahai, A. (2012). New techniques for noninteractive zero-knowledge. Journal of the ACM, 59(3), 1–35.

Groth, J., & Sahai, A. (2012). Efficient noninteractive proof systems for bilinear groups. SIAM Journal on Computing, 41(5), 1193–1232.

Hunacek, M. (2023). Introduction to number theory (1st ed.). Chapman and Hall/CRC.

Kilian, J. (1992). A note on efficient zero-knowledge proofs and arguments (Extended abstract). Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing - STOC ’92, 723–732.

Kilian, J. (1995). Improved efficient arguments. In D. Coppersmith (Ed.), Advances in Cryptology—CRYPT0’ 95 (Vol. 963, pp. 311–324). Springer Berlin Heidelberg.

Lipmaa, H. (2012). Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In R. Cramer (Ed.), Theory of Cryptography (Vol. 7194, pp. 169–189). Springer Berlin Heidelberg.

Micali, S. (2000). Computationally sound proofs. SIAM Journal on Computing, 30(4), 1253–1298.

Setty, S. (2020). Spartan: Efficient and general-purpose zksnarks without trusted setup. In D. Micciancio & T. Ristenpart (Eds.), Advances in Cryptology – CRYPTO 2020 (Vol. 12172, pp. 704–737). Springer International Publishing.

Ullah, S., Zheng, J., Din, N., Hussain, M. T., Ullah, F., & Yousaf, M. (2023). Elliptic Curve Cryptography; Applications, challenges, recent advances, and future trends: A comprehensive survey. Computer Science Review, 47, 100530.

Wahby, R. S., Tzialla, I., Shelat, A., Thaler, J., & Walfish, M. (2018). Doubly-efficient zksnarks without trusted setup. 2018 IEEE Symposium on Security and Privacy (SP), 926–943.


Crossmark Updates

How to Cite

Ramadhoni, M. ., & Handri Santoso. (2023). Zero Knowledge Proof for SNAP (Standar Nasional OPEN API Pembayaran) in Indonesia. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 1307-1315.