Prediction of the Human Development Index for Equitable Development in West Sumatra Province Using the C4.5 Algorithm

Authors

  • Weri Sirait Universitas Metamedia
  • Nur Azizah Universitas Metamedia

DOI:

10.33395/sinkron.v8i4.12968

Keywords:

Prediction; Human Development Index; Data Mining; C4.5

Abstract

Unequal development in Indonesia can be seen from the Human Development Index. The Human Development Index is a tool used to measure the attainment of the quality of life of a region or country and as material for economic policy on quality of life. It contains components of health level, education level and welfare level. In 2022, West Sumatra Province achieved the 9th highest Human Development Index in Indonesia, namely 73.26, with this figure the West Sumatra Province Human Development Index is above the national average. However, there are still regencies/cities in West Sumatra Province that have achievements below the national average. This factor causes the development conditions in West Sumatra Province to be uneven. Uneven human development conditions will make it difficult for the government to improve Human Resources (HR). In this research, the C45 Data Mining Algorithm was implemented to predict the Regency/City Human Development Index in West Sumatra Province. As is the method of the Central Bureau of Statistics in measuring the Human Development Index, the variables used from the Human Development Index indicators are Life Expectancy, Years of School Expectation, Average Length of Schooling, and Per Capita Expenditures. The Central Statistics Agency data used in this research covers all regencies/cities in West Sumatra during the period 2018-2022. Range levels are grouped into three groups, namely, low, medium, and high. Based on testing using RapidMiner software with the Cross Validation operator, an accuracy value of 86.61% was obtained.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Andesti, C. L., Lonanda, F., Azizah, N., Info, A., Mining, D., & Language, E. (2022). Potential for Improvement of Students’ s English Language with. 5(1), 1–10.

Anggraeni, L., & Arum R, P. (2022). Analisis Cluster Menggunakan Algoritma K-Means Pada Provinsi Sumatera Barat Berdasarkan Indeks Pembangunan Manusia Tahun 2021. Prosiding Seminar Nasional UNIMUS, 5(1), 636–646.

Attamami, N., Triayudi, A., & Aldisa, R. T. (2023). Analisis Performa Algoritma Klasifikasi Naive Bayes dan C4 . 5 untuk Prediksi Penerima Bantuan Jaminan Kesehatan. 7(2).

Azizah, N., Andesti, C. L., & Sirait, W. (2022). Implementasi Algoritma C4. 5 dalam Menentukan Tingkat Kepuasan Pelanggan di Kadai Kopi Lasi. IndraTech, 3(2), 1–7. http://ojs.stmikindragiri.ac.id/index.php/jit/article/view/103%0Ahttps://ojs.stmikindragiri.ac.id/index.php/jit/article/download/103/84

Fersellia, F., Utami, E., & Yaqin, A. (2023). Sentiment Analysis of Shopee Food Application User Satisfaction Using the C4.5 Decision Tree Method. Sinkron, 8(3), 1554–1563. https://doi.org/10.33395/sinkron.v8i3.12531

Ginting, V. S., Kusrini, K., & Taufiq, E. (2020). Implementasi Algoritma C4.5 untuk Memprediksi Keterlambatan Pembayaran Sumbangan Pembangunan Pendidikan Sekolah Menggunakan Python. Inspiration: Jurnal Teknologi Informasi Dan Komunikasi, 10(1), 36–44. https://doi.org/10.35585/inspir.v10i1.2535

Nas, C. (2021). Data Mining Prediksi Minat Calon Mahasiswa Memilih Perguruan Tinggi Menggunakan Algoritma C4.5. Jurnal Manajemen Informatika (JAMIKA), 11(2), 131–145. https://doi.org/10.34010/jamika.v11i2.5506

Pratiwi, I. A. A. S., & Wijayanto, A. W. (2019). Klasifikasi Indeks Pembangunan Manusia dengan Metode K-Nearest Neighbor dan Support Vector Machine di Pulau Jawa. Jurnal Ilmu Komputer, 15(1), 8–21. https://ojs.unud.ac.id/index.php/jik/article/download/68565/44248

Putra, R. M., Asril, E., & Taslim, T. (2018). Prediksi Indeks Pembangunan Manusia Menggunakan Algoritma C4.5 di Kabupaten Kampar. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 9(2), 204–214. https://doi.org/10.31849/digitalzone.v9i2.1584

Rismayanti, R., Damayanti, F., & Khairunnisa, K. (2018). Penerapan Data Mining Algoritma C4.5 dalam Menentukan Rekam Jejak Kinerja Dosen STT Harapan Medan. SinkrOn, 3(1), 99–104. https://doi.org/10.33395/sinkron.v3i1.173

Sinaga, B., Manurung, J., Mayana, N., Tarigan, B., Feronika, S., & Sitepu, B. (2022). Application of with C4 . 5 algorithm to measure the level of student satisfaction with student services. 7(3), 2134–2143.

Sintawati, I. D., Widiarina, W., & Mariskhana, K. (2021). Application of the C4.5 Algorithm on the Effect of Watching YouTube Videos On the Development of Early Childhood Creativity. SinkrOn, 6(1), 120–126. https://doi.org/10.33395/sinkron.v6i1.11116

Siregar, Y. S., Sembiring, B. O., Hasdiana, H., Dewi, A. R., & Harahap, H. (2021). Algorithm C4.5 in mapping the admission patterns of new Students in Engineering Computer. SinkrOn, 6(1), 80–90. https://jurnal.polgan.ac.id/index.php/sinkron/article/view/11154

Sudalyo, R. A. T., & Mukti, B. (2022). Analysis University of Surakarta KIP Scholarship Recipients Using the Fuzzy MADM Method and C-45. Sinkron, 7(1), 9–16. https://doi.org/10.33395/sinkron.v7i1.11221

Sumpena, Akbar, Y., Nirat, & Henky, M. (2019). Comparison of C4 . 5 Algorithm and Naïve Bayes for Last Information on ICU Patients. Journal Publications & Informatics Engineering Research, 4(1), 88–94.

Yunus, W., & Haba, A. R. K. (2023). Implementasi Algoritma C.45 Dalam Prediksi Penyakit Kanker. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, 4(1), 70–76. https://doi.org/10.35870/jimik.v4i1.114

Downloads


Crossmark Updates

How to Cite

Sirait, W., & Azizah, N. . (2023). Prediction of the Human Development Index for Equitable Development in West Sumatra Province Using the C4.5 Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2179-2189. https://doi.org/10.33395/sinkron.v8i4.12968