Utilizing Genetic Algorithms To Enhance Student Graduation Prediction With Neural Networks

Authors

  • Witriana Endah Pangesti Universitas Nusa Mandiri
  • Indah Ariyati Universitas Bina Sarana Informatika
  • Priyono Universitas Bina Sarana Informatika
  • Sugiono Universitas Bina Sarana Informatika
  • Rachmat Suryadithia Universitas Bina Sarana Informatika

DOI:

10.33395/sinkron.v9i1.13161

Keywords:

Genetich algorithm, Graduation data mining, Graduation prediction, Neural network, Student graduation

Abstract

The prediction of student graduation plays a crucial role in improving higher education efficiency and as-sisting students in graduating on time. Neural networks have been used for predicting student graduation; however, the performance of neural network models can still be enhanced to make predictions more accurate. Genetic algorithms are optimization methods used to improve the performance of neural network models by optimizing their parameters. The problem at hand is the suboptimal performance of neural networks in predict-ing student graduation. Thus, the objective is to leverage genetic algorithms to improve the accuracy of stu-dent graduation predictions, measure the improvements obtained, and compare the accuracy results between the genetic algorithm-optimized neural network model and the neural network model without optimization. The training process of the neural network model is conducted using training data obtained through experiments, and the accuracy results of the neural network model with and without genetic algorithm optimization are compared. The research findings indicate that by harnessing genetic algorithms to optimize the parameters of the neural network model, the accuracy of student graduation predictions increased by 2.78%. Furthermore, the Area Under the Curve (AUC) also improved by 0.037%. These results demonstrate that integrating genetic algorithms into the neural network model can significantly enhance prediction performance. Thus, this study successfully utilized genetic algorithms to improve student graduation predictions using a neural network model. Experimental results show that prediction accuracy and AUC values significantly increased after opti-mizing the neural network model's parameters with genetic algorithms. Therefore, the use of genetic algorithms can be considered an effective approach to improving student graduation predictions, thereby assisting educa-tional institutions in improving efficiency and helping students graduate on tim.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ariyati, I., Ridwansyah, & Suhardjono. (2018). Implementasi Particle Swarm Optimization untuk Optimalisasi Data Mining Dalam Evaluasi Kinerja Asisten Dosen. Jurnal Informatika Dan Komputer (JIKO), 3(2), 70–75.

Chen, H., Zhang, J., Xu, Y., Chen, B., & Zhang, K. (2012). Performance comparison of artificial neural network and logistic regression model for differentiating lung nodules on CT scans. Expert Systems with Applications, 39(13), 11503–11509. https://doi.org/10.1016/j.eswa.2012.04.001

Hendra, Azis, M. A., & Suhardjono. (2020). ANALISIS PREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN DECISSION TREE BERBASIS PARTICLE SWARM OPTIMIZATION. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(1), 102–107. https://doi.org/https://doi.org/10.32736/sisfokom.v9i1.756

K, J., & M, P. (2012). Optimizing Weights of Artificial Neural Networks using Genetic Algorithms. Int. J. Adv. Res. Comput. Sci. Electron. Eng, 1(10), 2277–9043.

Moro, S., & Laureano, R. M. S. (2011). Using Data Mining for Bank Direct Marketing: An application of the CRISP-DM methodology. European Simulation and Modelling Conference, 117–121.

Nazari, A., & Pacheco Torgal, F. (2013). Predicting compressive strength of different geopolymers by artificial neural networks. Ceramics International, 39(3), 2247–2257. https://doi.org/10.1016/j.ceramint.2012.08.070

Nurdin, H., Sartini, Sumarna, Maulana, Y. I., & Riyanto, V. (2023). Prediction of Student Graduation with the Neural Network Method Based on Particle Swarm Optimization. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2353–2362. https://doi.org/10.33395/sinkron.v8i4.12973

Ridwansyah, & Purwaningsih, E. (2018). Particle Swarm Optimization Untuk Meningkatkan Akurasi Prediksi Pemasaran Bank. Jurnal PILAR Nusa Mandiri, 14(1), 83–88.

Ridwansyah, R., Wijaya, G., & Purnama, J. J. (2020). Hybrid Optimization Method Based on Genetic Algorithm for Graduates Students. Jurnal Pilar Nusa Mandiri, 16(1), 53–58. https://doi.org/10.33480/pilar.v16i1.1180

Riyanto, V., Hamid, A., & Ridwansyah. (2019). Prediction of Student Graduation Time Using the Best Algorithm. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 1–9. https://doi.org/http://dx.doi.org/10.24014/ijaidm.v2i1.6424

S, R., & N, R. (2016). Diagnosis of chronic kidney disease using machine learning algorithms. International Journal of Innovative Research in Computer and Communication Engineering, 4(1), 812–820.

Salmu, S., & Solichin, A. (2017). Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naïve Bayes : Studi Kasus UIN Syarif Hidayatullah Jakarta. Seminar Nasional Multidisiplin Ilmu (SENMI) 2017, (April), 701–709.

Satapathy, S. C., Chittineni, S., Krishna, S. M., Murthy, J. V. R., & Reddy, d P. V. G. D. P. (2012). Kalman particle swarm optimized polynomials for data classification. Appl. Math. Model, 36(1), 115–126.

Suhardjono, Wijaya, G., & Hamid, A. (2019). PREDIKSI WAKTU KELULUSAN MAHASISWA MENGGUNAKAN SVM BERBASIS PSO. Bianglala Informatika, 7(2), 97–101.

Widaningsih, S. (2019). Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm. Jurnal Tekno Insentif, 13(1), 16–25. https://doi.org/10.36787/jti.v13i1.78

Downloads


Crossmark Updates

How to Cite

Pangesti, W. E., Ariyati, I., Priyono, Sugiono, & Suryadithia, R. (2024). Utilizing Genetic Algorithms To Enhance Student Graduation Prediction With Neural Networks. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 276-284. https://doi.org/10.33395/sinkron.v9i1.13161