Comparison PSO And IWPSO Performance In Optimizing Decision Tree Algorithm On Heart Disease Dataset

Authors

  • Inggit Dwi Oktaviani Universitas Amikom Yogyakarta
  • Ferian Fauzi Abdulloh Universitas Amikom Yogyakarta

DOI:

10.33395/sinkron.v9i1.13208

Keywords:

Comparison, Decision Tree, Heart Disease, IWPSO, PSO

Abstract

Heart disease, one of the most common and potentially fatal chronic diseases, has become a major focus in global health efforts. In this study, researchers used the decision tree algorithm on the heart disease dataset with the stages of the decision algorithm including the EDA, Split Data, and Decision tree modeling stages. Furthermore, hyperparameters use PSO and IWPSO to optimize the algorithm. The purpose of this research is to analyze the performance of Particle Swarm Optimization (PSO) and Inertia Weight Particle Swarm Optimization (IWPSO) in heart disease prediction based on relevant datasets. PSO and IWPSO were applied to the heart disease dataset, with the results showing an accuracy rate of 78% for PSO and 84% for IWPSO. These results indicate that IWPSO provides significant performance improvement compared to PSO in the context of heart disease prediction. The implications of these findings can support the development of more efficient prediction systems for early detection of heart disease, making a positive contribution to prevention efforts and further treatment of this critical health condition. In addition, the purpose of this research is to continue research in the form of C4.5 on heart disease with a result of 80.43%. In this study, IWPSO got the best accuracy of 84.23% greater than previous research. The results of this study are to provide insight that PSO and IWPSO hyperparameters can optimize decision trees in handling heart disease datasets and continue research.

GS Cited Analysis

Downloads

Download data is not yet available.

References

REFERENCES

Agus Oka Gunawan, I. M., Indah Saraswati, I. D. A., Riswana Agung, I. D. G., & Eka Putra, I. P. (2023). Klasifikasi Penyakit Jantung Menggunakan Algoritma Decision Tree Series C4.5 Dengan Rapidminer. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(2), 73–83. https://doi.org/10.47233/jteksis.v5i2.775

Al-Taie, R. R. K., Saleh, B. J., Saedi, A. Y. F., & Salman, L. A. (2021). Analysis of WEKA data mining algorithms Bayes net, random forest, MLP and SMO for heart disease prediction system: A case study in Iraq. International Journal of Electrical and Computer Engineering, 11(6), 5229–5239. https://doi.org/10.11591/ijece.v11i6.pp5229-5239

Alfaris, L., Siagian, R. C., Muhammad, A. C., Nyuswantoro, U. I., Laeiq, N., & Mobo, F. D. (2023). Classification of Spiral and Non-Spiral Galaxies using Decision Tree Analysis and Random Forest Model: A Study on the Zoo Galaxy Dataset. Scientific Journal of Informatics, 10(2), 139–150. https://doi.org/10.15294/sji.v10i2.44027

Aniamarta, T., Salsabilla Huda, A., & Lizariani Aqsha, F. (2022). Causes and Treatments of Heart Attack. Biologica Samudra, 4(1), 22–31. https://doi.org/10.33059/jbs.v4i1.3925

Aziz, F., & Lawi, A. (2022). Increasing electrical grid stability classification performance using ensemble bagging of C4.5 and classification and regression trees. International Journal of Electrical and Computer Engineering, 12(3), 2955–2962. https://doi.org/10.11591/ijece.v12i3.pp2955-2962

Hashim, N., Ismail, N. F. N., Johari, D., Musirin, I., & Rahman, A. A. (2022). Optimal population size of particle swarm optimization for photovoltaic systems under partial shading condition. International Journal of Electrical and Computer Engineering, 12(5), 4599–4613. https://doi.org/10.11591/ijece.v12i5.pp4599-4613

Hussein, A. A. (2018). Improve The Performance of K-means by using Genetic Algorithm for Classification Heart Attack. International Journal of Electrical and Computer Engineering (IJECE), 8(2), 1256. https://doi.org/10.11591/ijece.v8i2.pp1256-1261

Iqbal, M., Herliawan, I., Ridwansyah, & Gata, W. (2020). Implementation of Particle Swarm Optimization Based Machine Learning Algorithm for Student Performance Prediction. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 6(2), 195–204. https://doi.org/10.33480/jitk.v6i2.1695.IMPLEMENTATION

Juliane, C., & Technology, I. (2023). Comparison Of The C . 45 And Naive Bayes Algorithms To Predict Diabetes. 8(4), 2641–2650.

Korzhakin, D. A., & Sugiharti, E. (2021). Implementation of Genetic Algorithm and Adaptive Neuro Fuzzy Inference System in Predicting Survival of Patients with Heart Failure. Scientific Journal of Informatics, 8(2), 251–257. https://doi.org/10.15294/sji.v8i2.32803

Kristiyanti, D. A., & Normah, N. (2019). Optimising the Particle Swam Optimazion Usage for Predicting Indonesia Presidential Election Result Period 2019-2024. SinkrOn, 4(1), 32. https://doi.org/10.33395/sinkron.v4i1.10149

Murinto, M., & Rosyda, M. (2022). Logarithm Decreasing Inertia Weight Particle Swarm Optimization Algorithms for Convolutional Neural Network. JUITA: Jurnal Informatika, 10(1), 99. https://doi.org/10.30595/juita.v10i1.12573

Phan, T. M., Ha, P. T., Duong, T. L., & Nguyen, T. T. (2020). Improved particle swarm optimization algorithms for economic load dispatch considering electric market. International Journal of Electrical and Computer Engineering, 10(4), 3918–3926. https://doi.org/10.11591/ijece.v10i4.pp3918-3926

Purwaningsih, E. (2019). Application of the Support Vector Machine and Neural Network Model Based on Particle Swarm Optimization for Breast Cancer Prediction. SinkrOn, 4(1), 66. https://doi.org/10.33395/sinkron.v4i1.10195

Riansyah, M., Suwilo, S., & Zarlis, M. (2023). Improved Accuracy In Data Mining Decision Tree Classification Using Adaptive Boosting (Adaboost). SinkrOn, 8(2), 617–622. https://doi.org/10.33395/sinkron.v8i2.12055

Santoso, H., & Musdholifah, A. (2019). Case Base Reasoning (CBR) and Density Based Spatial Clustering Application with Noise (DBSCAN)-based Indexing in Medical Expert Systems. Khazanah Informatika : Jurnal Ilmu Komputer Dan Informatika, 5(2), 169–178. https://doi.org/10.23917/khif.v5i2.8323

Sekyere, Y. O. M., Effah, F. B., & Okyere, P. Y. (2023). Hyperbolic Tangent - Based Adaptive Inertia Weight Particle Swarm Optimization. Jurnal Nasional Teknik Elektro, 2. https://doi.org/10.25077/jnte.v12n2.1095.2023

Setiawan, A., Santoso, L. W., & Adipranata, R. (2019). Penerapan Algoritma Particle Swarm Optimization ( PSO ) untuk Optimisasi Pembangunan Negara dalam Turn Based Strategy Game. Jurnal Infra, 7(1), 249–255.

Widiyati, D. K., Wati, M., & Pakpahan, H. S. (2018). Penerapan Algoritma ID3 Decision Tree Pada Penentuan Penerima Program Bantuan Pemerintah Daerah di Kabupaten Kutai Kartanegara. Jurnal Rekayasa Teknologi Informasi (JURTI), 2(2), 125. https://doi.org/10.30872/jurti.v2i2.1864

Downloads


Crossmark Updates

How to Cite

Oktaviani, I. D., & Ferian Fauzi Abdulloh. (2024). Comparison PSO And IWPSO Performance In Optimizing Decision Tree Algorithm On Heart Disease Dataset. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 375-383. https://doi.org/10.33395/sinkron.v9i1.13208