Deployment of Web-Based YOLO for CT Scan Kidney Stone Detection
DOI:
10.33395/sinkron.v8i3.13744Keywords:
Kidney stones; Kidney CT-Scan; YOLO v5; Object detection; Flask Web IntegrationAbstract
This research aims to develop a kidney stone object detection system using machine learning techniques like YOLO and object detection, integrated into a Flask-based web interface to support early diagnosis by medical professionals. The trained model demonstrates strong pattern learning capabilities. Evaluation of the public dataset model reveals an average mean Average Precision (mAP) of 0.9698 for 'kidney stone' labels. This detection model exhibits high performance with an accuracy rate of 96.33%, precision of 96.98%, recall of 99.23%, and an F1-score of 98.1%. Clinical data evaluation shows that the YOLOv5-based detection system performs exceptionally well, with an average mAP of 0.9571, accuracy of 93.06%, precision of 95.71%, recall of 97.1%, and F1-score of 96.49%, indicating the model's capability to detect kidney stones with high precision and accuracy. Thus, both the evaluation on the public dataset and clinical dataset performance support accurate diagnosis processes and further treatment planning. Moreover, this research advances to the stage where the detection model can be directly utilized through implementation via Flask web deployment.
Downloads
References
Akkasaligar, P. T., & Biradar, S. (2020). Automatic Segmentation and Analysis of Renal Calculi in Medical Ultrasound Images. Pattern Recognition and Image Analysis, 30(4), 748–756. https://doi.org/10.1134/S1054661820040021/METRICS
Aplikasi, P., Pakar, S., Awal, D., Batu, P., Berbasis, G., Dengan, W., & Metode, M. (2022). PERANCANGAN APLIKASI SISTEM PAKAR DOAGNOSA AWAL PENYAKIT BATU GINJAL BERBASIS WEB DENGAN MENGGUNAKAN METODE FORWARD CHAINING. JURNAL ILMIAH INFORMATIKA, 10(01), 15–19. https://doi.org/10.33884/JIF.V10I01.4513
Bagchi, S. (2022). Digimammocad: a new deep learning-based cad system for mammogram breast cancer diagnosis with mass identification.
Bagla, K., Diwan, A. D., & Agarwal, K. (2022). DarthYOLO: Using YOLO for Real-Time Image Segmentation. Advances in Transdisciplinary Engineering, 27, 551–558. https://doi.org/10.3233/ATDE220794
Batubara, Z. H., Hamonangan, Y., Arfan, M., & Hidayatno, A. (2024). Perancangan Sistem Deteksi Pelanggaran Penggunaan Helm Dengan Metode Deep Learning Menggunakan Yolov5 Ultralytic. Transient: Jurnal Ilmiah Teknik Elektro, 13(1), 11–20. https://doi.org/10.14710/transient.v13i1.11-20
Dawami, H., Rachmawati, E., & Sulistiyo, M. D. (2023). Deteksi Penggunaan Masker Wajah Menggunakan YOLOv5. e-Proceeding of Engineering, 10(2), 1746.
Dwiyanto, R., Widodo, D. W., & Kasih, P. (2022). Implementasi Metode You Only Look Once ( YOLOv5 ) Untuk Klasifikasi Kendaraan Pada CCTV Kabupaten Tulungagung. Seminar Nasional Inovasi Teknologi, 1(1), 102–104.
Fan, Y., & Fan, Y. (2023). Image semantic segmentation using deep learning technique. Applied and Computational Engineering, ACE Vol.4(1), 810–817. https://doi.org/10.54254/2755-2721/4/2023439
Ferraro, P. M., Robertson, W., & Unwin, R. (2023). Renal stone disease. Medicine (United Kingdom), 51(4), 229–233. https://doi.org/10.1016/j.mpmed.2023.01.007
Freund, T., Hamdaoui, Y., & Spiwack, A. (2021). Union and intersection contracts are hard, actually. In DLS 2021 - Proceedings of the 17th ACM SIGPLAN International Symposium on Dynamic Languages, co-located with SPLASH 2021 (Vol. 1, Nomor 1). Association forComputing Machinery. https://doi.org/10.1145/3486602.3486767
Gothane, D. S. (2021). A Practice for Object Detection Using YOLO Algorithm. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 268–272. https://doi.org/10.32628/cseit217249
Hatami, M., Tukino, T., Nurapriani, F., Widiyawati, W., & Andriani, W. (2023). View of DETEKSI HELMET DAN VEST KESELAMATAN SECARA REALTIME MENGGUNAKAN METODE YOLO BERBASIS WEB FLASK. https://journalstkippgrisitubondo.a.id/index.php/EDUSAINTEK/article/view/651/429
Hoffman, A. (2021). Kidney Disease: Kidney Stones. https://typeset.io/papers/kidney-disease-kidney-stones-4xd320h69e
Howles, S. A., & Thakker, R. V. (2020). Genetics of kidney stone disease. Nature Reviews Urology 2020 17:7, 17(7), 407–421. https://doi.org/10.1038/s41585-020-0332-x
Indaryanto, F., Nugroho, A., & Alfa Faridh Suni, D. (2021). Aplikasi Penghitung Jarak dan Jumlah Orang Berbasis YOLO Sebagai Protokol Kesehatan Covid-19. Edu Komputika Journal, 8(1), 31–38. https://doi.org/10.15294/EDUKOMPUTIKA.V8I1.47837
Jha, V., RajendraPrasad, M., & Jain, S. (2022). Covid 19 Prediction Through Chest CT Scans using Deep Learning and Deploying Model on Flask Web. Proceedings - 2022 2nd International Conference on Innovative Sustainable Computational Technologies, CISCT 2022. https://doi.org/10.1109/CISCT55310.2022.10046647
Kavitha, A. R., & Palaniappan, K. (2023). Brain tumor segmentation using a deep Shuffled-YOLO network. International Journal of Imaging Systems and Technology, 33(2), 511–522. https://doi.org/10.1002/IMA.22832
Lemay, A. (2019). KIDNEY RECOGNITION IN CT USING YOLOV3 A PREPRINT. https://www.theobjects.com/dragonfly/
Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2022). Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3523–3542. https://doi.org/10.1109/TPAMI.2021.3059968
Muhd Suberi, A. A. (2020). An improved diagnostic algorithm based on deep learning for ischemic stroke detection in posterior fossa.
Nugraha, K. C., & Sipayung, E. M. (2023). VEHICLE LICENSE PLATE DETECTION USING YOLO ALGORITHM. Jurnal Algoritma, Logika dan Komputasi, 6(2), 605–611. https://doi.org/10.30813/J-ALU.V6I2.4739
Pattanayak, S. (2023). Introduction to Deep-Learning Concepts and TensorFlow. Pro Deep Learning with TensorFlow 2.0, 109–197. https://doi.org/10.1007/978-1-4842-8931-0_2
Pranovich, A. A., Ismailov, A. K., Karelskaya, N. A., Kostin, A. A., Karmazanovsky, G. G., & Gritskevich, A. A. (2022). Artificial intelligence in the diagnosis and treatment of kidney stone disease. Russian Journal of Telemedicine and E-Health, 8(1), 42–57. https://doi.org/10.29188/2712-9217-2022-8-1-42-57
Pulipalupula, M., Patlola, S., Nayaki, M., Yadlapati, M., Das, J., & Sanjeeva Reddy, B. R. (2023). Object Detection using You only Look Once (YOLO) Algorithm in Convolution Neural Network (CNN). 2023 IEEE 8th International Conference for Convergence in Technology, I2CT 2023. https://doi.org/10.1109/I2CT57861.2023.10126213
Rathod, J., & Trivedi, K. (2021). CUSTOM OBJECT DETECTION, TRACKING AND WEB API WITH YOLO AND FLASK USING DARKNET NEURAL NETWORK FRAMEWORK. International Research Journal of Engineering and Technology. www.irjet.net
Relan, K. (2019). Beginning with Flask. Building REST APIs with Flask, 1–26. https://doi.org/10.1007/978-1-4842-5022-8_1
Vysakh V Mohan, Pradeep Prakash, & Resmi K R. (2022). A Survey on Deep Learning Concepts and Techniques. International Journal of Advanced Research in Science, Communication and Technology, 20–27. https://doi.org/10.48175/IJARSCT-4903
Wibowo, A., Lusiana, L., & Dewi, T. K. (2023). Implementasi Algoritma Deep Learning You Only Look Once (YOLOv5) Untuk Deteksi Buah Segar Dan Busuk. Paspalum: Jurnal Ilmiah Pertanian, 11(1), 123. https://doi.org/10.35138/paspalum.v11i1.489
Yudha Sambawitasia, I. P., Irma Wulandari, P., & Sukadana, K. (2022). Pemeriksaan Ct Stonografi Pada Kasus Nefrolithiasis. JRI (Jurnal Radiografer Indonesia), 5(2), 96–103. https://doi.org/10.55451/jri.v5i2.133
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Adnin Ramadhani, Abu Salam
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.