Deployment of Web-Based YOLO for CT Scan Kidney Stone Detection

Authors

  • Adnin Ramadhani Universitas Dian Nuswantoro
  • Abu Salam Universitas Dian Nuswantoro

DOI:

10.33395/sinkron.v8i3.13744

Keywords:

Kidney stones; Kidney CT-Scan; YOLO v5; Object detection; Flask Web Integration

Abstract

This research aims to develop a kidney stone object detection system using machine learning techniques like YOLO and object detection, integrated into a Flask-based web interface to support early diagnosis by medical professionals. The trained model demonstrates strong pattern learning capabilities. Evaluation of the public dataset model reveals an average mean Average Precision (mAP) of 0.9698 for 'kidney stone' labels. This detection model exhibits high performance with an accuracy rate of 96.33%, precision of 96.98%, recall of 99.23%, and an F1-score of 98.1%. Clinical data evaluation shows that the YOLOv5-based detection system performs exceptionally well, with an average mAP of 0.9571, accuracy of 93.06%, precision of 95.71%, recall of 97.1%, and F1-score of 96.49%, indicating the model's capability to detect kidney stones with high precision and accuracy. Thus, both the evaluation on the public dataset and clinical dataset performance support accurate diagnosis processes and further treatment planning. Moreover, this research advances to the stage where the detection model can be directly utilized through implementation via Flask web deployment.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Akkasaligar, P. T., & Biradar, S. (2020). Automatic Segmentation and Analysis of Renal Calculi in Medical Ultrasound Images. Pattern Recognition and Image Analysis, 30(4), 748–756. https://doi.org/10.1134/S1054661820040021/METRICS

Aplikasi, P., Pakar, S., Awal, D., Batu, P., Berbasis, G., Dengan, W., & Metode, M. (2022). PERANCANGAN APLIKASI SISTEM PAKAR DOAGNOSA AWAL PENYAKIT BATU GINJAL BERBASIS WEB DENGAN MENGGUNAKAN METODE FORWARD CHAINING. JURNAL ILMIAH INFORMATIKA, 10(01), 15–19. https://doi.org/10.33884/JIF.V10I01.4513

Bagchi, S. (2022). Digimammocad: a new deep learning-based cad system for mammogram breast cancer diagnosis with mass identification.

Bagla, K., Diwan, A. D., & Agarwal, K. (2022). DarthYOLO: Using YOLO for Real-Time Image Segmentation. Advances in Transdisciplinary Engineering, 27, 551–558. https://doi.org/10.3233/ATDE220794

Batubara, Z. H., Hamonangan, Y., Arfan, M., & Hidayatno, A. (2024). Perancangan Sistem Deteksi Pelanggaran Penggunaan Helm Dengan Metode Deep Learning Menggunakan Yolov5 Ultralytic. Transient: Jurnal Ilmiah Teknik Elektro, 13(1), 11–20. https://doi.org/10.14710/transient.v13i1.11-20

Dawami, H., Rachmawati, E., & Sulistiyo, M. D. (2023). Deteksi Penggunaan Masker Wajah Menggunakan YOLOv5. e-Proceeding of Engineering, 10(2), 1746.

Dwiyanto, R., Widodo, D. W., & Kasih, P. (2022). Implementasi Metode You Only Look Once ( YOLOv5 ) Untuk Klasifikasi Kendaraan Pada CCTV Kabupaten Tulungagung. Seminar Nasional Inovasi Teknologi, 1(1), 102–104.

Fan, Y., & Fan, Y. (2023). Image semantic segmentation using deep learning technique. Applied and Computational Engineering, ACE Vol.4(1), 810–817. https://doi.org/10.54254/2755-2721/4/2023439

Ferraro, P. M., Robertson, W., & Unwin, R. (2023). Renal stone disease. Medicine (United Kingdom), 51(4), 229–233. https://doi.org/10.1016/j.mpmed.2023.01.007

Freund, T., Hamdaoui, Y., & Spiwack, A. (2021). Union and intersection contracts are hard, actually. In DLS 2021 - Proceedings of the 17th ACM SIGPLAN International Symposium on Dynamic Languages, co-located with SPLASH 2021 (Vol. 1, Nomor 1). Association forComputing Machinery. https://doi.org/10.1145/3486602.3486767

Gothane, D. S. (2021). A Practice for Object Detection Using YOLO Algorithm. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 268–272. https://doi.org/10.32628/cseit217249

Hatami, M., Tukino, T., Nurapriani, F., Widiyawati, W., & Andriani, W. (2023). View of DETEKSI HELMET DAN VEST KESELAMATAN SECARA REALTIME MENGGUNAKAN METODE YOLO BERBASIS WEB FLASK. https://journalstkippgrisitubondo.a.id/index.php/EDUSAINTEK/article/view/651/429

Hoffman, A. (2021). Kidney Disease: Kidney Stones. https://typeset.io/papers/kidney-disease-kidney-stones-4xd320h69e

Howles, S. A., & Thakker, R. V. (2020). Genetics of kidney stone disease. Nature Reviews Urology 2020 17:7, 17(7), 407–421. https://doi.org/10.1038/s41585-020-0332-x

Indaryanto, F., Nugroho, A., & Alfa Faridh Suni, D. (2021). Aplikasi Penghitung Jarak dan Jumlah Orang Berbasis YOLO Sebagai Protokol Kesehatan Covid-19. Edu Komputika Journal, 8(1), 31–38. https://doi.org/10.15294/EDUKOMPUTIKA.V8I1.47837

Jha, V., RajendraPrasad, M., & Jain, S. (2022). Covid 19 Prediction Through Chest CT Scans using Deep Learning and Deploying Model on Flask Web. Proceedings - 2022 2nd International Conference on Innovative Sustainable Computational Technologies, CISCT 2022. https://doi.org/10.1109/CISCT55310.2022.10046647

Kavitha, A. R., & Palaniappan, K. (2023). Brain tumor segmentation using a deep Shuffled-YOLO network. International Journal of Imaging Systems and Technology, 33(2), 511–522. https://doi.org/10.1002/IMA.22832

Lemay, A. (2019). KIDNEY RECOGNITION IN CT USING YOLOV3 A PREPRINT. https://www.theobjects.com/dragonfly/

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2022). Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3523–3542. https://doi.org/10.1109/TPAMI.2021.3059968

Muhd Suberi, A. A. (2020). An improved diagnostic algorithm based on deep learning for ischemic stroke detection in posterior fossa.

Nugraha, K. C., & Sipayung, E. M. (2023). VEHICLE LICENSE PLATE DETECTION USING YOLO ALGORITHM. Jurnal Algoritma, Logika dan Komputasi, 6(2), 605–611. https://doi.org/10.30813/J-ALU.V6I2.4739

Pattanayak, S. (2023). Introduction to Deep-Learning Concepts and TensorFlow. Pro Deep Learning with TensorFlow 2.0, 109–197. https://doi.org/10.1007/978-1-4842-8931-0_2

Pranovich, A. A., Ismailov, A. K., Karelskaya, N. A., Kostin, A. A., Karmazanovsky, G. G., & Gritskevich, A. A. (2022). Artificial intelligence in the diagnosis and treatment of kidney stone disease. Russian Journal of Telemedicine and E-Health, 8(1), 42–57. https://doi.org/10.29188/2712-9217-2022-8-1-42-57

Pulipalupula, M., Patlola, S., Nayaki, M., Yadlapati, M., Das, J., & Sanjeeva Reddy, B. R. (2023). Object Detection using You only Look Once (YOLO) Algorithm in Convolution Neural Network (CNN). 2023 IEEE 8th International Conference for Convergence in Technology, I2CT 2023. https://doi.org/10.1109/I2CT57861.2023.10126213

Rathod, J., & Trivedi, K. (2021). CUSTOM OBJECT DETECTION, TRACKING AND WEB API WITH YOLO AND FLASK USING DARKNET NEURAL NETWORK FRAMEWORK. International Research Journal of Engineering and Technology. www.irjet.net

Relan, K. (2019). Beginning with Flask. Building REST APIs with Flask, 1–26. https://doi.org/10.1007/978-1-4842-5022-8_1

Vysakh V Mohan, Pradeep Prakash, & Resmi K R. (2022). A Survey on Deep Learning Concepts and Techniques. International Journal of Advanced Research in Science, Communication and Technology, 20–27. https://doi.org/10.48175/IJARSCT-4903

Wibowo, A., Lusiana, L., & Dewi, T. K. (2023). Implementasi Algoritma Deep Learning You Only Look Once (YOLOv5) Untuk Deteksi Buah Segar Dan Busuk. Paspalum: Jurnal Ilmiah Pertanian, 11(1), 123. https://doi.org/10.35138/paspalum.v11i1.489

Yudha Sambawitasia, I. P., Irma Wulandari, P., & Sukadana, K. (2022). Pemeriksaan Ct Stonografi Pada Kasus Nefrolithiasis. JRI (Jurnal Radiografer Indonesia), 5(2), 96–103. https://doi.org/10.55451/jri.v5i2.133

Downloads


Crossmark Updates

How to Cite

Adnin Ramadhani, & Abu Salam. (2024). Deployment of Web-Based YOLO for CT Scan Kidney Stone Detection. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1357-1368. https://doi.org/10.33395/sinkron.v8i3.13744