Implementation of Random Forest Algorithm for Graduation Prediction

Authors

  • Fajar Riskiyono Universitas Budi Luhur
  • Deni mahdiana Universitas Budi Luhur

DOI:

10.33395/sinkron.v8i3.13750

Keywords:

graduation, random forest, predicting, data mining, university

Abstract

University also has responsibility for the period of study taken by students in accordance with the level of education taken. The prediction of student study duration is designed to support the study program in guiding students to graduate on time. In this problem, data mining techniques can be applied to make predictions, namely by using the Random Forest classification method. The stages used in this study are data collecting, namely collecting student data, the data selection stage of 300 students with 5 (five) input data attributes including personal data (gender, age, marital status, job status) and academic data (grade) and 1 (one) attribute as an output containing choices about on time and late. The next stage is preprocessing with the aim of eliminating duplication, noise, and missing values, the stage of data transformation by normalizing age attributes (young and old), grade (large and small). Then the data split stage 3 times, namely 50/50, 40/60, and 30/60, the modeling stage with random forest, and finally, the evaluation stage by analyzing the confusion matrix consisting of accuracy, precision, and recall. The results of the study show that the proposed model can do well with predictions, that is, with the same results for all three data splits. The test value is 100% accuracy, 100% recall, and 100% precision. With this value, the success rate for predicting the timeliness of student graduation will be more accurate

GS Cited Analysis

Downloads

Download data is not yet available.

References

Aang Kisnu Darmawan, Ivana Yudhisari, Anwari Anwari, & Masdukil Makruf. (2023). Pola Prediksi Kelulusan Siswa Madrasah Aliyah Swasta dengan Support Vector Machine dan Random Forest. Jurnal Minfo Polgan, 12(2), 387–400.

Aria Hendrawan, Lenny Margaretta Huizen, Agusta Praba Ristadi Pinem, & Dinar Anggit Wicaksana. (2021). Implementasi Pemilihan Fitur Metode Wrapper dan Embedded dalam Prediksi Ketepatan Kelulusan Mahasiswa. Seminar Nasional Penelitian Dan Pengabdian Kepada Masyarakat (SNPPKM), 330–335.

Embun Fajar Wati, & Biktra Rudianto. (2022). Penerapan Algoritma KNN, Naive Bayes Dan C4.5 Dalam Memprediksi Kelulusan Mahasiswa. Jurnal Format, 11(2), 168–175.

Embun Fajar Wati, Elvi Sunita Perangin-Angin, & Anggi Puspita Sari. (2023). Prediction of Student Graduation using the K-Nearest Neighbors Method. International Journal of Information System & Technology, 7(3), 211–216.

Embun Fajar Wati, Elvi Sunita Perangin-Angin, & Anggi Puspita Sari. (2024). Improved Naive Bayes Algorithm with Particle Swarm Optimization to Predict Student Graduation. International Journal of Information System & Technology, 7(6), 386–391.

Gede Suwardika, & I Ketut Putu Suniantara. (2019). ANALISIS RANDOM FOREST PADA KLASIFIKASI CART KETIDAKTEPATAN WAKTU KELULUSAN MAHASISWA UNIVERSITAS TERBUKA. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 13(3), 179–186.

Halim, K., Erny Herwindiati, D., & Sutrisno, T. (2023). PENERAPAN METODE DECISION TREE UNTUK PRAKIRAAN CUACA KOTA BEKASI. Jurnal Ilmu Komputer Dan Sistem Informasi, 11(2). https://doi.org/10.24912/jiksi.v11i2.26026

Hermawan, L., & Bellaniar Ismiati, M. (2020). Pembelajaran Text Preprocessing berbasis Simulator Untuk Mata Kuliah Information Retrieval. Jurnal Transformatika, 17(2), 188. https://doi.org/10.26623/transformatika.v17i2.1705

Hikmah Dwiyanti Nasir, Dahlia Nur, & Zawiyah Saharuna. (2020). Prediksi Tingkat Polusi Udara Dengan Data Mining. Prosiding Seminar Nasional Teknik Elektro Dan Informatika (SNTEI), 90–95.

I Made Budi Adnyana. (2015). PREDIKSI LAMA STUDI MAHASISWA DENGAN METODE RANDOM FOREST (STUDI KASUS : STIKOM BALI). CSRID Journal, 8(3), 201–208.

I Made Budi Adnyana. (2021). PENERAPAN TEKNIK KLASIFIKASI UNTUK PREDIKSI KELULUSAN MAHASISWA BERDASARKAN NILAI AKADEMIK. Jurnal Teknologi Informasi Dan Komputer, 7(3), 480–485.

Ibnu Alfarobi, Taransa Agasya Tutupoly, & Ade Suryanto. (2018). KOMPARASI ALGORITMA C4.5, NAIVE BAYES, DAN RANDOM FOREST UNTUK KLASIFIKASI DATA KELULUSAN MAHASISWA JAKARTA. Jurnal Mitra Dan Teknologi Pendidikan, 4(1).

Indra Irawan, M Riski Qisthiano, Muhammad Syahril, & Pamuji M. Jakak. (2023). Optimasi Prediksi Kelulusan Tepat Waktu: Studi Perbandingan Algoritma Random Forest dan Algoritma K-NN Berbasis PSO. Jurnal Pengembangan Sistem Informasi Dan Informatika, 4(4), 26–36.

Jaya S. Saleh, Angelia M. Adrian, & Junaidy B. Sanger. (2022). Sistem Klasifikasi Kelulusan Mahasiswa dengan Algoritma Random Forest. Jurnal Ilmiah Realtech, 18(1), 10–14.

Juwariyem, Sriyanto, Sri Lestari, & Chairani. (2024). Prediction of Stunting in Toddlers Using Bagging and Random Forest Algorithms. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(2), 947–955.

Mao, Y., He, Y., Liu, L., & Chen, X. (2020). Disease Classification Based on Eye Movement Features With Decision Tree and Random Forest. Frontiers in Neuroscience, 14, 1–11. https://doi.org/10.3389/fnins.2020.00798

Muhammad Labib Mu’tashim, Ati Zaidiah, & Bambang Saras Yulistiawan. (2023). Klasifikasi Ketepatan Lama Studi Mahasiswa Dengan Algoritma Random Forest Dan Gradient Boosting (Studi Kasus Fakultas Ilmu Komputer Universitas Pembangunan Nasional Veteran Jakarta). Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA), 155–166.

Muhammad Sony Maulana, Raja Sabarudin, & Wahyu Nugraha. (2019). Prediksi Ketepatan Kelulusan Mahasiswa Diploma dengan Komparasi Algoritma Klasifikasi. JUSTIN (Jurnal Sistem Dan Teknologi Informasi), 7(3), 202–206.

Pramudita Oktaviani, Ibnu Asror, S. T. , M. T., & Dr. Moch. Arif Bijaksana. (2018). Analisis Implementasi Sistem OLAP dan Klasifikasi Ketepatan Waktu Lulus dan Undur Diri Mahasiswa Teknik Informatika Universitas Telkom Menggunakan Random forest. E-Proceeding of Engineering, 3564–3574.

reza maulana, & devy kumalasari. (2019). ANALISIS KOMPARASI ALGORITMA KLASIFIKASI DATA MINING UNTUK PREDIKSI STATUS KELULUSAN MAHASISWA AKADEMI BINA SARANA INFORMATIKA. Jurnal Informatika Kaputama (JIK), 3(2), 29–36.

Romdan Muhamad Ubaidilah, Zulfi Anugerahwati, Imaniar Ikko Mulya Rizky, & Sri Lestari. (2023). Prediksi Kelulusan Mahasiswa Berdasarkan Data Kunjung dan Peminjaman Buku menggunakan Rapid Miner dengan Metode C.45 dan Random Forest. I-Robot Jurnal, 7(2), 14–20.

Sri Diantika, Hiya Nalatissifa, Nurlaelatul Maulidah, Riki Supriyadi, & Ahmad Fauzi. (2024). Penerapan Teknik Random Oversampling Untuk Memprediksi Ketepatan Waktu Lulus Menggunakan Algoritma Random Forest. Computer Science (CO-SCIENCE), 4(1), 11–18

.

Sri Diantika, Hiya Nalatissifa, Riki Supriyadi, Nurlaelatul Maulidah, & Ahmad Fauzi. (2023). Implementasi Multi-Class Gradient Boosting Untuk Mengklasifikasikan Jenis Hewan Pada Kebun Binatang. ANTIVIRUS: Jurnal Ilmiah Teknik Informatika, 7(1), 32–40.

Wati, E. F., Sari, A. P., Alawiah, E. T., Siregar, M. H., & Rudianto, B. (2021). Particle Swarm Optimization Comparison on Decision Tree and Naive Bayes for Pandemic Graduation Classification. 2nd International Conference on Advanced Information Scientific Development (ICAISD), 1–11.

Zaskila Nurfadilla, & Faisal. (2022). IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI KELULUSAN MAHASISWA TEPAT WAKTU MENGGUNAKAN RANDOM FOREST. AGENTS Journal of Artificial Intelligence and Data Science, 1(1), 1–8.

Downloads


Crossmark Updates

How to Cite

Riskiyono, F., & mahdiana, D. (2024). Implementation of Random Forest Algorithm for Graduation Prediction. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1662-1670. https://doi.org/10.33395/sinkron.v8i3.13750