The Classification of Avocado Ripeness Levels Using CNN Method
DOI:
10.33395/sinkron.v8i3.13854Keywords:
Avocado, Ripening, Image Processing, Classification, CNNAbstract
This research aims to develop a model for classifying the ripeness level of avocados using the Convolutional Neural Network (CNN) algorithm. The dataset comprises images of avocados categorized into three classes: unripe, ripe, and overripe. The CNN model is trained to classify the images into one of these three categories. The results indicate that the developed model can classify avocado images with high accuracy. The primary tool used for developing and implementing this method is MATLAB R2022a. The CNN algorithm is utilized to recognize and classify the ripeness level of avocados. This process involves several image processing steps, starting with preprocessing, image enhancement, and segmentation to isolate the avocado area. The dataset used in this research consists of 452 images distributed in 3 classes (unripe with 142, ripe with 66, and rotten with 244), with 80% used for training and 20% for testing. After 10 accuracy tests, the results indicate an accuracy rate of 90%. Additionally, features extracted from the images include color, shape, size, and texture characteristics, such as Mean, Standard Deviation, Kurtosis, Skewness, Variance, Entropy Value, Maximum Pixel, and Minimum Pixel. This research contributes to the field of agricultural technology by providing a robust method for the automatic classification of avocado ripeness. The findings are expected to facilitate accurate and efficient recognition of avocado ripeness, thereby supporting agricultural practices and market operations. Future research could explore the use of data augmentation techniques to further improve the accuracy and generalization of this model.
Downloads
References
Alfiantama, I., Ilham, M., & Putra, A. (2024, January). Klasifikasi Tingkat Roasting Biji Kopi Dengan Metode CNN. In Seminar Nasional Teknologi & Sains (Vol. 3, No. 1, pp. 285-290).
Aruraj, A., Alex, A., & George, S. T. (2019). Welcome to “2019 International Conference on Signal Processing and Communication (ICSC).” 2019 International Conference on Signal Processing and Communication, ICSC 2019, c, v. https://doi.org/10.1109/ICSC45622.2019.8938305
Basiroh, Basiroh, and Wiji Lestari. 2020. “Analysis of Plant Fragaria Xananassa Disease Diagnoses Using Production Rules Base on Expert System.” Jurnal Pilar Nusa Mandiri 16(1): 25–32.
Chakraborty, S., Raman, A., Sen, S., Mali, K., Chatterjee, S., & Hachimi, H. (2019). Contrast Optimization using Elitist Metaheuristic Optimization and Gradient Approximation for Biomedical Image Enhancement. Proceedings - 2019 Amity International Conference on Artificial Intelligence, AICAI 2019, 712–717. https://doi.org/10.1109/AICAI.2019.8701367
Damayanti, S. A., Arkadia, A., & Prasvita, D. S. (2021). Klasifikasi Buah Mangga Badami Untuk Menentukan Tingkat Kematangan dengan Metode CNN. In Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya (Vol. 2, No. 2, pp. 158-165).
Fu, L., Duan, J., Zou, X., Lin, J., Zhao, L., Li, J., & Yang, Z. (2020). Fast and accurate detection of banana fruits in complex background orchards. IEEE Access, 8, 196835–196846. https://doi.org/10.1109/ACCESS.2020.3029215
Fung, K. L. Y. et al. (2020). Ultramicroscopy Accurate EELS background subtraction – an adaptable method in MATLAB.Ultramicroscopy, Vol. 217, No. June, P. 113052. Doi: 10.1016/j.ultramic.2020.113052
Hanafi, M. H., Fadillah, N., & Insan, A. (2019). Optimasi Algoritma K-Nearest Neighbor untuk Klasifikasi Tingkat Kematangan Buah Alpukat Berdasarkan Warna. IT Journal Research and Development, 4(1), 10-18.
Jia, W., Tian, Y., Luo, R., Zhang, Z., Lian, J., & Zheng, Y. (2020). Detection and segmentation of overlapped fruits based on optimized mask RCNN application in apple harvesting robot.Comput. Electron. Agric., Vol. 172, No. March, p. 105380. Doi: 10.1016/j.compag.2020.105380.
Namruddin, R., Mirfan, M., & Irfandi, I. (2023). Klasifikasi Kesegaran Buah Apel Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Android. Prosiding SISFOTEK, 7(1), 295-302.
Ningrum, B. N. T. C., Ni’mah, E. N., Arifin, M. P., & Dara, M. A. D. W. (2024, January). KLASIFIKASI DAN PENGENALAN POLA PENYAKIT CABAI DENGAN METODE CNN (Convolution Neural Network). In Seminar Nasional Teknologi & Sains (Vol. 3, No. 1, pp. 125-132).
Reswan, Y., Toyib, R., Witriyono, H., & Anggraini, A. (2024). Klasifikasi Tingkat Kematangan Buah Nanas Berdasarkan Fitur Warna Menggunakan Metode K–Nearest Neighbor (KNN). JURNAL MEDIA INFOTAMA, 20(1), 280-287.
Rusli, H. N. (2024). Pengembangan Aplikasi Klasifikasi Tingkat Kematangan Buah Apel Berdasarkan Warna Kulit Buah Apel dengan Metode Convolutional Neural Network. KALBISIANA Jurnal Sains, Bisnis dan Teknologi, 10(2), 178-185.
Ruswandi, M., Mulyana, D. I., & Awaludin, A. (2022). Optimasi Klasifikasi Kematangan Buah Alpukat Menggunakan KNN dan Fitur Statistik. Smart Comp: Jurnalnya Orang Pintar Komputer, 11(2), 210-219.
Sabuj, H. H., et al. (2023). A Comparative Study of Machine Learning Classifiers for Speaker’s Accent Recognition.2023 IEEE World AI IoT Congr. AIIoT 2023, Pp. 627–632. Doi: 10.1109/AIIoT58121.2023.10174511
Saputra, J., Sa'adati, Y., Ardhana, V. Y. P., & Afriansyah, M. (2023). Klasifikasi Kematangan Buah Alpukat Mentega Menggunakan Metode K-Nearest Neighbor Berdasarkan Warna Kulit Buah. Resolusi: Rekayasa Teknik Informatika dan Informasi, 3(5), 196-203.
Sri, M. S., Naik, B. R., & Sankar, K. J. (2021). Object Detection Based on Faster R-Cnn. Int. J. Eng. Adv. Technol.. Vol. 10, No. 3, Pp. 72–76.Doi: 10.35940/ijeat.c2186.0210321
Yuan, F., Zhan, L., Pan, P., & Cheng, E. (2021). Low bit-rate compression of underwater image based on human visual system. Signal Processing: Image Communication, 91(May 2020), 116082. https://doi.org/10.1016/j.image.2020.116082
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Gamma Wira Wibowo, Edy Mulyanto
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.