Sentiment Analysis towards the 2024 Vice Presidential Candidate Debate Using the Support Vector Machine Algorithm

Authors

  • Raihan Rizieq Harahap Department of Computer Science, Faculty of Science and Technology, Universitas Islam Negeri Sumatera Utara
  • Mhd. Furqan Department of Computer Science, Faculty of Science and Technology, Universitas Islam Negeri Sumatera Utara

DOI:

10.33395/sinkron.v8i3.13903

Keywords:

public sentiment, sentiment analysis, vice presidential debate, youtube, support vector machine.

Abstract

In today’s digital era, social media plays an important role in disseminating information and influencing public opinion. For instance, YouTube. At the 2024 Vice Presidential Debate, YouTube became a medium where people gave various comments. This study aimed to analyze public sentiment through comments on the 2024 Vice Presidential Debate on the Metro TV YouTube channel. This study used descriptive quantitative methods with the Support Vector Machine algorithm to identify various public comments. The results show that from the data experiment taken as many as 1012 data, 80% data training amounting to 809 data and 20% data testing amounting to 203 data is carried out. An accuracy of 82% was obtained with a precision value of 80%, a recall value of 87%, and an f1-score value of 83%. With a fairly high accuracy value, the support vector machine model can be said to be the right model to calculate the accuracy value in sentiment analysis.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Arsi, P., & Waluyo, R. (2021). ANALISIS SENTIMEN WACANA PEMINDAHAN IBU KOTA INDONESIA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM). 8(1), 147–156. https://doi.org/10.25126/jtiik.202183944

Baita, A., & Cahyono, N. (n.d.). ANALISIS SENTIMEN MENGENAI VAKSIN SINOVAC MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) DAN K-NEAREST NEIGHBOR (KNN).

Furqan, M., Fakhri, A., Nasir, A., Pahang, M., Abdullah, A.-S., Id, M. A., & My, A. E. (n.d.). BIG DATA APPROACH TO SENTIMENT ANALYSIS IN MACHINE LEARNING-BASED MICROBLOGS: PERSPECTIVES OF RELIGIOUS MODERATION PUBLIC POLICY IN INDONESIA. In Journal of Applied Engineering and Technological Science (Vol. 5, Issue 2).

Furqan, M., Ikhsan, M., & Aini, R. (2023). Algoritma Support Vector Machine Untuk Analisis Sentimen Masyarakat Indonesia Terhadap Pandemi Virus Corona Di Media Sosial. Kesatria : Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen), 4(4), 908–915. https://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/241%0Afiles/5265/Furqan et al. - 2023 - Algoritma Support Vector Machine Untuk Analisis Se.pdf

Handayani, A., & Zufria, I. (2023). Analisis Sentimen Terhadap Bakal Capres RI 2024 di Twitter Menggunakan Algoritma SVM. Journal of Information System Research (JOSH), 5(1), 53–63. https://doi.org/10.47065/josh.v5i1.4379

Iskandar, F. (2020). Analisis Wacana Politik Debat Publik Calon Presiden dan Calon Wakil Presiden Republik Indonesia. Journal of Education, Humaniora and Social Sciences (JEHSS), 3(1), 31–38. https://doi.org/10.34007/jehss.v3i1.177

Mualfah, D., Ramadhoni, Gunawan, R., & Mulyadipa Suratno, D. (2023). Analisis Sentimen Komentar YouTube TvOne Tentang Ustadz Abdul Somad Dideportasi Dari Singapura Menggunakan Algoritma SVM. Jurnal Fasilkom, 13(01), 72–80. https://doi.org/10.37859/jf.v13i01.4920

Nurian, A., & Nurina Sari, B. (n.d.). ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI GOOGLE PLAY MENGGUNAKAN NAÏVE BAYES. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3), 2830–7062. https://doi.org/10.23960/jitet.v11i3%20s1.3348

Oktavia, D., & Ramadahan, Y. R. (2023). Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM). Media Online), 4(1), 407–417. https://doi.org/10.30865/klik.v4i1.1040

Permata Aulia, T. M., Arifin, N., & Mayasari, R. (2021). Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19. SINTECH (Science and Information Technology) Journal, 4(2), 139–145. https://doi.org/10.31598/sintechjournal.v4i2.762

Purbolaksono, M. D., Irvan Tantowi, M., Imam Hidayat, A., & Adiwijaya, A. (2021). Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 393–399. https://doi.org/10.29207/resti.v5i2.3008

Rabbani, S., Safitri, D., Rahmadhani, N., Sani, A. A. F., & Anam, M. K. (2023). Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 153–160. https://doi.org/10.57152/malcom.v3i2.897

Raudya, T., Irawan, B., & Faqih, A. (2023). PERBANDINGAN IMPLEMENTASI 2 ALGORITMA SVM DAN K-NN DALAM PENGKLASIFIKASIAN KEPUASAN PENGGUNA SMART E-LEARNING. In Jurnal Mahasiswa Teknik Informatika (Vol. 7, Issue 3).

Saptanti, E. I. (2020). Analisis Manajemen Impresi Ma’ruf Amin dalam Debat Pilpres 2019. Ultimacomm: Jurnal Ilmu Komunikasi, 12(2), 262–284. https://doi.org/10.31937/ultimacomm.v12i2.1573

Sriani, Suardi, & Frianda Gultom, I. (n.d.). Analisis Sentimen Kebijakan Pemberian Subsidi Motor Listrik Menggunakan Metode Support Vector Machine.

Downloads


Crossmark Updates

How to Cite

Harahap, R. R., & Furqan, M. (2024). Sentiment Analysis towards the 2024 Vice Presidential Candidate Debate Using the Support Vector Machine Algorithm. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1783-1794. https://doi.org/10.33395/sinkron.v8i3.13903