Tanjung, Tegar Haryahya Classification of Heart Disease Using Support Vector Machine
DOI:
10.33395/sinkron.v8i3.13904Keywords:
Support Vector Machine, Heart Disease, ClassificationAbstract
Heart disease is a disease that has a high mortality rate, with more than 12 million deaths occurring throughout the world. Diagnosis of heart disease is very challenging due to the complex interdependence of several attribute factors. The problem that frequently encountered is the lack of accuracy in the classification process. Thus, a system is needed to carry out early diagnosis of heart disease. The structure of this research is to take a heart disease dataset from Kaggle. Then the data will be cleaned with preprocessing. The preprocessing process carried out is changing table names, checking missing values, and normalizing. 820 data will be trained using a Support Vector Machine and 205 data will be tested to find out how well the model can perform classification. The results of training and testing from a total of 1025 data will form a classification model. The model formed using the Support Vector Machine obtained confusion matrix results of 88 is True Positive data, 93 is True Negative data, 10 is False Positive data, and 14 is False Negative data. So the results of model training produce an accuracy of 88%.
Downloads
References
Annisa, R. (2019). ANALISIS KOMPARASI ALGORITMA KLASIFIKASI DATA MINING UNTUK PREDIKSI PENDERITA PENYAKIT JANTUNG. Jurnal Teknik Informatika Kaputama (JTIK), 3(1).
Chala Beyene, M. (n.d.). Survey on Prediction and Analysis the Occurrence of Heart Disease Using Data Mining Techniques. http://www.ijpam.eu
Farhan, R., Pohan, R., Ratnawati, D. E., & Arwani, I. (2022). Implementasi Algoritma Support Vector Machine dan Model Bag-of-Words dalam Analisis Sentimen mengenai PILKADA 2020 pada Pengguna Twitter (Vol. 6, Issue 10). http://j-ptiik.ub.ac.id
Furqan, M., Kurniawan, R., & HP, K. I. (2020). Evaluasi Performa Support Vector Machine Classifier Terhadap Penyakit Mental. JURNAL SISTEM INFORMASI BISNIS, 10(2), 203–210. https://doi.org/10.21456/vol10iss2pp203-210
Ghorbani, R., & Ghousi, R. (2019). Predictive data mining approaches in medical diagnosis: A review of some diseases prediction. In International Journal of Data and Network Science (Vol. 3, Issue 2, pp. 47–70). Growing Science. https://doi.org/10.5267/j.ijdns.2019.1.003
Jain, A., Ahirwar, M., Pandey, R., & Pandey, R. A. (2019). Review on Intutive Prediction of Heart Disease Using Data Mining Techniques. International Journal of Computer Sciences and Engineering. https://doi.org/10.26438/ijcse/v7i7.109113ï
Kiruthika Devi, S., Krishnapriya, S., & Kalita, D. (2016). Prediction of heart disease using data mining techniques. Indian Journal of Science and Technology, 9(39). https://doi.org/10.17485/ijst/2016/v9i39/102078
Sahrani, L. (2021). Classification of Tomato Leaf Based on Gabor Filter Extraction And Support Vector Machine Algorithm. International Journal of Information System & Technology Akreditasi, 4(2), 677–681.
Saputra, K. (n.d.). Perbandingan Kinerja Fungsi Kernel Algoritma Support Vector Machine Pada Klasifikasi Penyakit Padi. IJCCS, x, No.x, 1–5.
Wibisono, A. B., & Fahrurozi, A. (2019). PERBANDINGAN ALGORITMA KLASIFIKASI DALAM PENGKLASIFIKASIAN DATA PENYAKIT JANTUNG KORONER. Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 161–170. https://doi.org/10.35760/tr.2019.v24i3.2393
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Tegar Haryahya Tanjung, Mhd Furqan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.