Using Fuzzy Tsukamoto Method In Forecasting The Amount Medication Requrementsat In The Hospital

Authors

  • Abdullah Bayhaqi Computer Science Study Program, Faculty of Science and Technology North Sumatra State Islamic University
  • Rakhmat kurniawan Computer Science Study Program, Faculty of Science and Technology North Sumatra State Islamic University

DOI:

10.33395/sinkron.v8i3.13926

Keywords:

Drugs, Fuzzy, Predictions, Tsukamoto

Abstract

The pharmaceutical installation as one of the hospital service locations is an inseparable part of the hospital health service system which is oriented towards patient service, including pharmaceutical services needed by patients such as consumable medical equipment that is affordable for all levels of society and the provision of quality medicines. The problem that arises is the uncertain number of patients and the medicines needed by each patient are different and often the supply of medicines that are currently needed by the community is empty, while medicines that are less needed are in abundant stock. Mistakes in ordering medicines can cause shortages or excesses of medicine stock. They tend to only use estimates of the amount of remaining stock without any special methods being used. Even hospital pharmacies tend to buy too many medicines because of uncertain demand and fear of shortages. A method that can help in predicting the amount needed for medicines is by applying the fuzzy Tsukamoto method. The prediction process begins with testing drug data in 2022 to predict the amount needed for medicines in 2023 before finally the drug data for 2023 is used to predict the amount needed in 2024.The prediction process will use drug sales data in the form of the amount of inventory, the amount needed and remaining stock to build a prediction model that projects the amount of drug need in the year 2023. This approach will involve analyzing historical data and applying the Tsukamoto method to produce predictions of the amount needed for all drugs in the following year.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Dewanti, F. P., Setiyowati, S., & Harjanto, S. (2022). Prediksi Persediaan Obat Untuk Proses Penjualan Menggunakan Metode Decision Tree Pada Apotek. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 10(1). https://doi.org/10.30646/tikomsin.v10i1.604

Fahirah, & Wulandari, L. (2020). The Implementation of Least Square Method on the Palm Shells Sales Forecasting Application. International Journal of Information Engineering and Electronic Business, 12(5), 1–13. https://doi.org/10.5815/ijieeb.2020.05.01

Furqan, M., Sastia H Wibowo, S. Kom, M. K., & Dedy Abdullah, ST. M, E. (2016). Sistem Persediaan Obat Pada Puskesmas Menggunakan Metode Naive Bayes (Studi Kasus Puskesmas Talang Tinggi Seluma) Skripsi. Universits Muhammadiyah Bengkulu. Universitas Muhamadiyah Bengkulu, 18(60), 1–8.

Hidayat, K., Efendi, J., & Faridz, R. (2020). Analisis Pengendalian Persediaan Bahan Baku Kerupuk Mentah Potato Dan Kentang Keriting Menggunakan Metode Economic Order Quantity (EOQ). Performa: Media Ilmiah Teknik Industri, 18(2), 125–134. https://doi.org/10.20961/performa.18.2.35418

Numan, N., Kusumadewi, S., & Muzayyanah, N. (2020). Sistem Inferensi Fuzzy Untuk Membantu Diagnosis Penyakit Pneumonia Anak. IT Journal Research and Development, 5(1), 53–62. https://doi.org/10.25299/itjrd.2020.vol5(1).5088

Nurkasanah, S., Prasetyo, A., & Bhanu Setyawan, M. (2022). Implementasi Logika Fuzzy untuk Prediksi Hasil Panen Padi dengan Metode Tsukamoto. Jurnal Rekayasa Teknologi Informasi (JURTI). https://oipas.sentraki.umpo.ac.id/index.php/JRTK/article/download/5660/2299

Pinem, N. S., & Utomo, D. P. (2020). Implementasi Fuzzy Logic Dengan Infrensi Tsukamoto Untuk Prediksi Jumlah Kemasan Produksi (Studi Kasus : PT. Sinar Sosro Medan). Pelita Informatika : Informasi Dan Informatika, 9(1), 56–60. https://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/download/2739/1848

Prabowo, Y. A., & Mandala Putra, L. E. U. (2022). Perancangan Hour Meter Berbasis Internet of Thing Menggunakan Logika Fuzzy. Jurnal Informatika Dan Rekayasa Elektronik, 5(1), 53–61. https://doi.org/10.36595/jire.v5i1.513

Puspitasari, N., Prafanto, A., Ansyori, A., Wati, M., &Septiarini, A. (2022). Fuzzy Tsukamoto untuk Memprediksi Estimasi Persediaan Darah. Journal MIND (Multimedia Artificial Intelligent Networking Database), 7(2), 188–203. https://doi.org/10.26760/mindjournal.v7i2.188-203

Rodiana, K., Turnip, B., & Marbun, M. (2020). Sistem Pendukung Keputusan Penentuan Jumlah Pemesanan Obat Pada Apotek Dengan Metode Fuzzy Tsukamoto. JOISIE Journal Of Information System And Informatics Engineering, 4(Desember), 139–146.

Salendah, J., Kalele, P., Tulenan, A., & ... (2022). Penentuan Beasiswa Dengan Metode Fuzzy Tsukamoto Berbasis Web Scholarship Determination Using Web Based Fuzzy Tsukamoto Method. Proceeding Seminar …, (nama), 81–90. https://proceeding.unived.ac.id/index.php/snasikom/article/view/80%0Ahttps://proceeding.unived.ac.id/index.php/snasikom/article/download/80/70

Sari, H. U., Kartika, J., & Japa, A. (2019). Penerapan Fuzzy Inference System Pada Permintaan Darah Di Palang Merah Indonesia Pematangsiantar. Prosiding Seminar Nasional Riset Information Science (SENARIS), 1(September), 185. https://doi.org/10.30645/senaris.v1i0.22

Downloads


Crossmark Updates

How to Cite

Bayhaqi, A. ., & kurniawan, R. . (2024). Using Fuzzy Tsukamoto Method In Forecasting The Amount Medication Requrementsat In The Hospital. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1987-1996. https://doi.org/10.33395/sinkron.v8i3.13926