Sentiment Analysis of the Indriver Online Ojek Application using the Naïve Bayes Classifier Method
DOI:
10.33395/sinkron.v8i3.13934Keywords:
Indriver, Naïve Bayes Classifier , Online Motorbike Taxi, Sentiment AnalysisAbstract
According to statista.com, there are 73.1 million online motorcycle taxi users in Indonesia and there are 68.1 million active online motorcycle taxi users in Indonesia especially in the province of North Sumatra, there are 43,811 online motorcycle taxi drivers. The Indriver online motorcycle taxi application is an international online transportation service that gives passengers and drivers the freedom to negotiate prices. Sentiment analysis analizes text to determine positive, negative, or neutral sentiments. The method commonly used in sentiment analysis is the Naive Bayes Classifier method. This research uses quantitative methods to analyze sentiment toward the InDriver online motorcycle taxi application by utilizing the Naïve Bayes Classifier algorithm. User review data is collected from reviews on the Google Play Store, then cleaned and converted into a format suitable for statistical analysis. To analyze sentiment towards the InDriver online motorcycle taxi application using the Naïve Bayes Classifier method, collecting review data and user comments using the Python library and the Visual Studio code application, carrying out preprocessing, TF-IDF weighting, dividing the data into 70% and 30%, after that conducting testing using naïve Bayes classifier algorithm, as well as carrying out evaluation using a confusion matrix. The results of calculating the level of accuracy using the Naïve Bayes method for sentiment classification can be said to be good, this can be seen from the accuracy results on a dataset of 1393 with a comparison of training data and test data of 7:3, obtaining an accuracy value of 76%, precision of 71% , recall of 81% and f1-score of 76%. The results of this research analysis produced superior positive sentiment totaling 677 and negative sentiment totaling 608 while neutral was 90
Downloads
References
Afifah, T. A., Martiansah, R., Alviyoni, M., & Arifin, A. (2023). Perbandingan Algoritma Klasifikasi C4.5 Dan Naive Bayes untuk Memprediksi Gagal Jantung. SENTIMAS: Seminar Nasional Penelitian Dan Pengabdian Masyarakat, 78–85. https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction,
Ahmad, I., Samsugi, S., & Irawan, Y. (2022). Implementasi Data Mining Sebagai Pengolahan Data. Jurnal Teknoinfo, 16(1), 46. http://portaldata.org/index.php/portaldata/article/view/107
Alfarizi, M. R. S., Al-farish, M. Z., Taufiqurrahman, M., Ardiansah, G., & Elgar, M. (2023). Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning. Karya Ilmiah Mahasiswa Bertauhid (KARIMAH TAUHID), 2(1), 1–6.
Arsi, P., & Waluyo, R. (2021). Sentiment Analysis of Discourse on Moving the Indonesian Capital City Using the Support Vector Machine (SVM) Algorithm. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.202183944
Isnain, A. R., Sakti, A. I., Alita, D., & Marga, N. S. (2021). Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm. Jurnal Data Mining Dan Sistem Informasi, 2(1), 31. https://doi.org/10.33365/jdmsi.v2i1.1021
Kurniawan, R.R., Zufria, I. (2022). Penerapan Text Mining Pada Sistem Penyeleksian Judul Skripsi Menggunakan Algoritma Latent Dirichlet Allocation(LDA). Indonesian Journal of Computer Science, 11(3), 1035–1052. https://doi.org/10.33022/ijcs.v11i3.3120
Lake, I. R., Colón-González, F. J., Barker, G. C., Morbey, R. A., Smith, G. E., & Elliot, A. J. (2019). Machine learning to refine decision making within a syndromic surveillance service. BMC Public Health, 19(1), 1–12. https://doi.org/10.1186/s12889-019-6916-9
Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Computer Engineering, Science and System Journal, 4(1), 78. https://doi.org/10.24114/cess.v4i1.11458
Nuria, D. P., Enri, U., & Umaidah, Y. (2024). Analisis Sentimen Maxim dengan Perbandingan Chi Square dan MI pada Naive Bayes. Jurnal Pendidikan Tambusai, 8, 16070–16081. https://www.jptam.org/index.php/jptam/article/view/14669
Rayuwati, Husna Gemasih, & Irma Nizar. (2022). IMPLEMENTASI AlGORITMA NAIVE BAYES UNTUK MEMPREDIKSI TINGKAT PENYEBARAN COVID. Jural Riset Rumpun Ilmu Teknik, 1(1), 38–46. https://doi.org/10.55606/jurritek.v1i1.127
Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1), 75–82. https://doi.org/10.31294/ijcit.v5i1.7951
Runimeirati, Abdul Muis, & Figur Muhammad. (2023). Pelatihan Text Mining Menggunakan Bahasa Pemrograman Python. Abdimas Langkanae, 3(1), 36–46. https://doi.org/10.53769/abdimas.3.1.2023.83
Sitorus, P. R. (2021). Analisis Sentimen Data Ulasan Aplikasi Indriver pada Situs Google Play Menggunakan Metode Naïve Bayes Classifier dan Support Vector Machine (Doctoral disertation). Universitas Sumatera Utara.
Utomo, D. P., & Mesran, M. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. Jurnal Media Informatika Budidarma, 4(2), 437. https://doi.org/10.30865/mib.v4i2.2080
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Zidan Akbar, Muhammad Ikhsan, ika Zufria
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.