Analysis of Performance Comparison between K-Nearest Neighbor (KNN) Method and Naïve Bayes Method in Reward for Honda Motorcycle Salesman Tour
DOI:
10.33395/sinkron.v8i3.13935Keywords:
K Nearest Neighbor, Naïve Bayes, Machine Learning, Reward, MotorcyclesAbstract
Honda Indako Trading Coy Krakatau is a company in the automotive and spare parts industry. As the main dealer of Honda motorcycles and spare parts for North Sumatra and Aceh, the company faces challenges in boosting sales and maintaining employee loyalty. To address this, the company offers a reward salesman tour for employees who meet certain criteria. However, the current evaluation system is too simple and does not fully capture the quality of employees, especially their product knowledge and involvement in company campaigns. This study aims to solve these issues using data mining techniques, specifically the Naïve Bayes and K-Nearest Neighbors (KNN) methods. These methods were chosen for their accuracy and simplicity. The K-Nearest Neighbor method (K=11) showed an accuracy of 94.04%, a precision of 83.78%, and a recall of 96.87%, while the Naïve Bayes method showed an accuracy of 81.81%, a precision of 72.00%, and a recall of 81.25%.
Downloads
References
Abdul Koda, Rahayu, P., Pratama, A., Rafly, A., & Kaslani. (2022). Penentuan Bonus Karyawan Dengan Menggunakan Algoritma K-Nearest Neighbor. KOPERTIP : Jurnal Ilmiah Manajemen Informatika Dan Komputer, 4(1), 14–20. https://doi.org/10.32485/kopertip.v4i1.115
Aini, N., Handoko, W., & Nurhaliza, R. (2021). PREDIKSI PENERIMAAN BANTUAN PIP PADA SMKS AL-FURQON BATUBARA DENGAN METODE NAÏVE BAYES. 1(3), 219–226.
Ali, M. M., Hariyati, T., Pratiwi, M. Y., & Afifah, S. (2022). Metodologi Penelitian Kuantitatif dan Penerapannya dalam Penelitian. Education Journal, 2(2), 1–6.
Aulia, A., Tanjung, M. R., Iqbal, M., & Wijaya, R. F. (2023). Implementasi Algoritma Naïve Bayes Dalam Menganalisis Jumlah Live Stream VTuber Skem. Bulletin of Information Technology (BIT), 4(4), 554–559. https://doi.org/10.47065/bit.v4i4.899
Dinata, R. K., & Hasdyna, N. (2020). Machine Learning.pdf (p. 23).
Faran, J., & Triayudi, A. (2024). Penerapan Algoritma K-Means Data Mining untuk Clustering Kinerja Karyawan Koperasi. Penerapan Algoritma K-Means Data Mining Untuk Clustering Kinerja Karyawan Koperasi, 4(4), 2096–2108. https://doi.org/10.30865/klik.v4i4.1728
Hairani, H., & Amrullah, A. Z. (2020). Pelatihan Pengenalan Data Science untuk Meningkatkan Kemampuan dalam Pengolahan Data. Jurnal Abdidas, 1(3), 95–99. https://doi.org/10.31004/abdidas.v1i3.31
Khairul, K., Nasyuha, A. H., Ikhwan, A., H. Aly, M., & Ahyanuardi, A. (2023). Implementation of Multiple Linear Regression to Estimate Profit on Sales of Screen Printing Equipment. Jurnal Infotel, 15(2), 55–61. https://doi.org/10.20895/infotel.v15i2.934
Khalaf, M. H., Sari, H. L., & Fredricka, J. (2024). Sistem Pakar Mendiagnosis Penyakit Rhinosinusitis Dengan Menggunakan Metode Naïve Bayes. 20(1), 86–97.
Nabilah, J., Syahputra, A., & Arifitama, B. (2024). Penilaian Kinerja Tenaga Pemasaran Untuk Menentukan Reward dan Benefit dengan Menggunakan Metode Weighted Product. 4(4), 2262–2271. https://doi.org/10.30865/klik.v4i4.1704
Nasien, D., Darwin, R., Cia, A., Leo Winata, A., Go, J., Charles Wijaya, R., & Charles Lo, K. (2024). Perbandingan Implementasi Machine Learning Menggunakan Metode KNN, Naive Bayes, Dan Logistik Regression Untuk Mengklasifikasi Penyakit Diabetes. 4(1).
Nasution, D., Sirait, D. N., Wardani, I., & Dwiyanto. (2022). Optimasi Jumlah Cluster Metode K-Medoids Berdasarkan Nilai DBI Pada Pengelompokkan Data Luas Tanaman Dan Produksi Kelapa Sawit Di Sumatera Utara. Kumpulan JurnaL Ilmu Komputer (KLIK), 9(2), 381.
Nasyuha, A. H. (2019). Sistem Pendukung Keputusan Menentukan Pemberian Pinjaman Modal dengan Metode Multi Attribute Utility Theory. Jurnal Media Informatika Budidarma, 3(2), 117. https://doi.org/10.30865/mib.v3i2.1093
Nijunnihayah, U., & Hilabi, S. S. (2024). Implementation of the K-Nearest Neighbor Algorithm to Predict Sales of Medical Devices in Medical Devices Implementasi Algoritma K-Nearest Neighbor untuk Prediksi Penjualan Alat Kesehatan pada Media Alkes. 4(April), 695–701.
Ramadhan, I., Elmi, S., Efrizoni, L., Ramadhan, I., Elmi, S., & Efrizoni, L. (n.d.). Implementasi algoritma k-nearest neighbor (knn) untuk prediksi bencana gunung berapi. 01, 58–65.
Sa’adah, T. F. (n.d.). Penerapan Metode Vikor Dalam Seleksi Pemberian Reward Pada Reseller Can Beauty Jombang Berbasis Website PENERAPAN METODE VIKOR DALAM SELEKSI PEMBERIAN REWARD PADA RESELLER CAN BEAUTY JOMBANG BERBASIS WEBSITE Thulu ’ ul Fajriyatus Sa ’ adah Indana Lazulfa. 102–113.
Sabardini, S. E., & Wijono, D. (2024). Citra Merek Sebagai Mediasi Kualitas Produk Terhadap Keputusan Pembelian Sepeda Motor Honda Di Sleman. Juremi: Jurnal Riset Ekonomi, 4(2), 467–478.
Sholekhah, F., Putri, A. D., Rahmaddeni, R., & Efrizoni, L. (2024). Perbandingan Algoritma Naïve Bayes dan K-Nearest Neighbors untuk Klasifikasi Metabolik Sindrom. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 507–514. https://doi.org/10.57152/malcom.v4i2.1249
Supiyandi, S.-, Siahaan, A. P. U., & Alfiandi, A. (2020). Sistem Pendukung Keputusan Pemilihan Pegawai Honorer Kelurahan Babura dengan Metode MFEP. Jurnal Media Informatika Budidarma, 4(3), 567. https://doi.org/10.30865/mib.v4i3.2107
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Ayyasi Fawaz, Khairul , Andysah Putera Utama Siahaan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.