Analysis of Indonesian Netizen Sentiment on Platform X Regarding the Arrival of Refugees in Indonesia Using the Multinominal Naive Bayes Method
DOI:
10.33395/sinkron.v8i3.13940Keywords:
Sentiment Analysis, Multinomial Naive Bayes, Rohingya Refugees, Indonesian Netizens, Platform X, Google Collab, Orange Data Mining, CrawlingAbstract
This research aims to analyze the sentiments of Indonesian netizens regarding the arrival of Rohingya refugees in Indonesia using the Multinomial Naive Bayes method. Sentiment analysis was carried out on comments obtained from platform X. The data collection technique used the crawling method to extract comments from platform X users regarding the issue of the arrival of Rohingya refugees. The tool used for crawling is Google Collab. The data analysis process includes sentiment labeling, data preprocessing (case folding, stopword removal, tokenizing, stemming), and classification using the Multinomial Naive Bayes method. The research results show that the majority of Indonesian netizens' sentiments regarding the arrival of Rohingya refugees in Indonesia are negative, with a percentage of 81%. Positive sentiment reached 8%, while neutral sentiment was 11%. The Multinomial Naive Bayes method produces an accuracy of 82.5% in classifying netizen sentiment. The tools used to process the data are the Orange Data Mining application version 3.36.2 It is hoped that this research can contribute to the development of computer science, especially in the fields of Text Mining, Natural Language Processing, Machine Learning and Artificial Intelligence (AI). It is also hoped that this research will provide benefits to parties related to handling the Rohingya refugee problem in Indonesia, such as the government, humanitarian organizations, mass media, academics, the general public, and other researchers.
Downloads
References
Amien, M. (2023). Sejarah dan Perkembangan Teknik Natural Language Processing (NLP) Bahasa Indonesia: Tinjauan tentang sejarah, perkembangan teknologi, dan aplikasi NLP dalam bahasa Indonesia. 2007, 1–7. http://arxiv.org/abs/2304.02746
Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944
Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi. Jurnal Teknoinfo, 14(2), 115. https://doi.org/10.33365/jti.v14i2.679
Idntimes (4 Dec 2023) 5 Fakta Etnis Rohingya : Asal dan Kenapa Mereka Dibenci Myanmar https://www.idntimes.com/news/world/andi-ir/5-fakta-etnis-rohingya-asal-dan-kenapa-mereka-dibenci-di-myanmar-c1c2s
Lesmana, L., Mukrodin, & Nabyla, F. (2020). Analisis Sentimen Pengguna Twitter PPDB Menggunakan Algoritma Multinominal Naive Bayes. Jurnal Sistem Informasi Dan Teknologi Peradaban (JSITP), 1(1). https://journal.peradaban.ac.id/index.php/jsitp/article/view/604
Liani, D. N., & Rina, N. (2020). Motif Penggunaan Media Sosial Twitter (Studi Deskriptif Kuantitatif Pada Pengikut Akun Twitter @EXOind). Cakrawala: Jurnal Humaniora Bina Sarana Informatika, 20(1), 63–67. http://ejournal.bsi.ac.id/ejurnal/index.php/cakrawala
Matthew, G. (2020). National interests and Indonesian-style diplomacy in resolving the Rohingya ethnic conflict in Myanmar. Jurnal Hubungan Internasional □ Tahun XIII, 1, 39–52.
Mike Napizahni (2 Juni 2022) Natural Language Processing (NLP) : Penjelasan % Contoh Penerapannyahttps://www.dewaweb.com/blog/nlp-adalah/
Padhana, K. A., & Sadikin, M. (2021). Analisis Sentimen Masyarakat Terhadap Kondisi Perekonomian di Indonesia Pada Masa Pandemi 2020. Jurnal Ilmu Teknik Dan Komputer, 5(2), 268–277.
Pratiwi, B. P., Handayani, A. S., & Sarjana, S. (2021). Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix. Jurnal Informatika Upgris, 6(2), 66–75. https://doi.org/10.26877/jiu.v6i2.6552
Primadi, H. (2019). Progres Penanganan Pengungsi Rohingya Oleh Pemerintah Indonesia Di Provinsi Aceh Tahun 2016-2018. EJournal Ilmu Hubungan Internasional, 7(1), 299–308.
Sabrani, A., Putu, I. G., Wedashwara, W., & Bimantoro, F. (2020). METODE MULTINOMIAL NAÏVE BAYES UNTUK KLASIFIKASI ARTIKEL ONLINE TENTANG GEMPA DI INDONESIA ( Multinomial Naïve Bayes Method for Classification of Online Article About Earthquake in Indonesia ). 2(1), 89–100.
Sari, F. V., & Wibowo, A. (2019). Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi. Jurnal SIMETRIS, 10(2), 681–686.
Sekitar Kaltim (5 dec 2023), Ribuan Netizen Ramaikan Petisi Tolak Rohingya dan Bubarkan UNHCR Indonesia https://sekitarkaltim.id/posts/250105/ribuan-netizen-ramaikan-petisi-tolak-rohingya-dan-bubarkan-unhcr-indonesia
Utami, D. S., & Erfina, A. (2021). Analisis Sentimen Pinjaman Online di Twitter Menggunakan Algoritma Support Vector Machine (SVM). SISMATIK (Seminar Nasional Sistem Informasi Dan Manajemen Informatika), 1(1), 299–305.
Wulandari, V. (2022). PERLAKUAN PEMERINTAH MYANMAR TERHADAP MINORITAS MUSLIM ROHINGYA PERSEPKTIF SEJARAH DAN HUKUM INTERNASIONAL Veronika Wulandari Program Studi Ilmu Hukum Fakultas Ilmu dan Ilmu Sosial Abstrak Menurut beberapa sejarawan Myanmar , kata Rohingya baru-baru ini m. Jurnal Ilmu Hukum Sui Generis, 2(3), 51–68.
Zulkarnain, Z., & Kusumawardhana, I. (2020). Bersama untuk Kemanusiaan: Penanganan Lintas Sektor terhadap Masalah Pengungsi Rohingya di Aceh 2015. Jurnal HAM, 11(1), 67. https://doi.org/10.30641/ham.2020.11.67-83
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Joefitra Zaqy, Leni Marlina, Rian Farta Wijaya
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.