Data Visualization for Building a Cyber Attack Monitoring Dashboard Based on Honeypot
DOI:
10.33395/sinkron.v8i4.14144Keywords:
Cowrie, Dionaea, ELK Stack, Honeypot, Network SecurityAbstract
Computer networks are essential for modern life, enabling efficient global information exchange. However, as technology advances, network security challenges grow. To enhance security, honeypots are used alongside firewalls, mimicking legitimate systems to attract hackers and analyze their attack methods. In this research, Cowrie and Dionaea honeypots are implemented. Cowrie targets brute force attacks on SSH, while Dionaea detects port scanning and denial of service (DoS) attacks. These honeypots effectively capture and log malicious activities, providing insights into attack patterns. The collected data is analyzed using the ELK Stack, which offers real-time visualization of attack trends, frequency, and methods. This analysis helps security teams quickly identify and mitigate threats. The integration of honeypots with the ELK Stack significantly enhances network defense by improving detection, analysis, and response to cyber threats. The analysis of the results shows that both honeypots effectively capture and record malicious activities entering the network, providing critical insights into the attack patterns employed by attackers. Within just minutes of deployment, the honeypots logged over 1,000 attacks, predominantly originating from botnets attempting to exploit system vulnerabilities. The captured log data is processed through the ELK Stack, allowing for real-time visualization of attack patterns, including geographic origins, attack frequency, and methods used. This enables security teams to proactively identify trends, assess risks, and implement targeted mitigation strategies more efficiently.
Downloads
References
Alzoubi, W. A., & Alrashdan, M. T. (2022). The effect of using honeypot network on system security. International Journal of Data and Network Science, 6(4), 1413–1418. https://doi.org/10.5267/j.ijdns.2022.5.010
Amal, M. R., & Venkadesh, P. (2022). Review of cyber attack detection: Honeypot system. Webology, 19(1), 5497–5514. https://doi.org/10.14704/WEB/V19I1/WEB19370
Gupta, C., Van Ede, T., & Continella, A. (2023). HoneyKube: Designing and Deploying a Microservices-based Web Honeypot. Proceeding - 44th IEEE Symposium on Security and Privacy Workshops, SPW 2023. https://doi.org/10.1109/SPW59333.2023.00005
Javadpour, A., Ja’fari, F., Taleb, T., Shojafar, M., & Benzaïd, C. (2024). A comprehensive survey on cyber deception techniques to improve honeypot performance. Computers & Security, 140(1), 103792. https://doi.org/10.1016/j.cose.2024.103792
Matin, I. M. M., & Rahardjo, B. (2020). The Use of Honeypot in Machine Learning Based on Malware Detection: A Review. 2020 8th International Conference on Cyber and IT Service Management, CITSM 2020. https://doi.org/10.1109/CITSM50537.2020.9268794
Mispriatin, M., Ginting, J. G. A., & Arifwidodo, B. (2022). Analisis Kinerja Honeypot Dionaea Dan Cowrie Dalam Mendeteksi Serangan. Prosiding Seminar Nasional Teknoka, 6, 170–178. https://doi.org/10.22236/teknoka.v6i1.448
Mondal, A., & Goswami, R. T. (2021). Enhanced Honeypot cryptographic scheme and privacy preservation for an effective prediction in cloud security. Microprocessors and Microsystems, 81(1), 103719. https://doi.org/10.1016/j.micpro.2020.103719
Natanegara, T., Muhyidin, Y., & Singasatia, D. (2023). IMPLEMENTASI HONEYPOT COWRIE DAN SNORT SEBAGAI ALAT DETEKSI SERANGAN PADA SERVER. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1871–1877. https://doi.org/10.36040/jati.v7i3.6989
Pratama, M. A., Setiawan, H., & Mair, Z. R. (2023). Implementasi Honeypot Sebagai Pendeteksi Serangan Pada Virtual Private Server (VPS). Jurnal Software Engineering and Computational Intelligence, 1(1), 26–39. https://doi.org/10.36982/jseci.v1i1.3045
Purba, W. W., & Efendi, R. (2021). Perancangan dan analisis sistem keamanan jaringan komputer menggunakan SNORT. AITI, 17(2), 143–158. https://doi.org/10.24246/aiti.v17i2.143-158
Sholihah, W., Pripambudi, S., & Mardiyono, A. (2020). Log Event Management Server Menggunakan Elastic Search Logstash Kibana (ELK Stack). JTIM : Jurnal Teknologi Informasi Dan Multimedia, 2(1), 12–20. https://doi.org/10.35746/jtim.v2i1.79
Stoleriu, R., Puncioiu, A., & Bica, I. (2021). Cyber Attacks Detection Using Open Source ELK Stack. Proceedings of the 13th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2021. https://doi.org/10.1109/ECAI52376.2021.9515120
Sun, Y., Tian, Z., Li, M., Su, S., Du, X., & Guizani, M. (2020). Honeypot identification in softwarized industrial cyber–physical systems. IEEE Transactions on Industrial Informatics, 17(8), 5542–5551. https://doi.org/10.1109/TII.2020.3044576
Ubaidillah, U., Taryo, T., & Hindasyah, A. (2023). Analisis dan Implementasi Honeypot Honeyd Sebagai Low Interaction Terhadap Serangan Distributed Denial Of Service (DDOS) dan Malware. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 5(3), 208–217. https://doi.org/10.35746/jtim.v5i3.405
Wastumirad, A. W., & Darmawan, M. I. (2021). Implementasi Honeypot Menggunakan Dionaea Dan Kippo Sebagai Penunjang Keamanan Jaringan Komunikasi Komputer. Jurnal Teknologi, 9(1), 80–91. https://doi.org/10.31479/jtek.v9i1.119
Wibawa, G. H. P., Sasmita, I. G. M. A., & Raharja, I. M. S. (2020). Analisis Data Log Honeypot Menggunakan Metode K-Means Clustering. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 8(1), 13–21. https://doi.org/10.24843/jim.2020.v08.i01.p02
Yang, X., Yuan, J., Yang, H., Kong, Y., Zhang, H., & Zhao, J. (2023). A Highly Interactive Honeypot-Based Approach to Network Threat Management. Future Internet, 15(4), 127. https://doi.org/10.3390/fi15040127
Yudhistira, A., & Fitrisia, Y. (2023). MONITORING LOG SERVER DENGAN ELASTICSEARCH, LOGSTASH DAN KIBANA (ELK). Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 8(1), 124–134. https://doi.org/10.36341/rabit.v8i1.2975
Yudyanto, N., Syaifuddin, S., & Azhar, Y. (2020). Integrasi Modern Honey Network Dengan Grafana Untuk Visualisasi. Jurnal Repositor, 2(10), 1380–1389. https://doi.org/10.22219/repositor.v2i10.1047
Yugitama, R., Kartika Rachman, P. P., & Sulistyo, S. (2020). EFISIENSI MONITORING HONEYPOT DENGAN MENGGUNAKAN VISUALISASI DAN OTOMATISASI LAPORAN LOG SERANGAN. JURNAL IT, 10(3), 1–14. https://doi.org/10.37639/jti.v10i3.138
Zmaranda, D. R., Moisi, C. I., Győrödi, C. A., Győrödi, R. Ş., & Bandici, L. (2021). An analysis of the performance and configuration features of MySQL document store and elasticsearch as an alternative backend in a data replication solution. Applied Sciences, 11(24), 11590. https://doi.org/10.3390/app112411590
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 I Gede Adnyana, Ayu Manik Dirgayusari, Ketut Jaya Atmaja
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.