Comparative Analysis of Express and Hono Framework Performance in Simple Registration Application
DOI:
10.33395/sinkron.v9i1.14333Keywords:
Express, Hono, PostgreSQL, JMeter, DockerAbstract
This research evaluates the performance of two Node.js frameworks, Express and Hono, in developing a simple registration application. This application serves as a backend to store user registration data into a PostgreSQL database using the pg client of the node package manager (npm). The purpose of this performance comparison is to identify the framework that is superior in executing 1 million requests in this scenario. The analysis shows that Express has an average execution time of 26.85% faster than Hono. However, it is inversely proportional to the resource usage, where Hono shows better efficiency with lower CPU and memory usage of 29.29% and 19.97%. These findings provide important insights for developers in choosing a suitable framework based on performance and resource efficiency requirements.
Downloads
References
Abouelyazid, M. (2022). Forecasting Resource Usage in Cloud Environments Using Temporal Convolutional Networks. Applied Research in Artificial Intelligence and Cloud Computing, 5(1), 179–194.
Ahmod, M. F. (2023). Javascript runtime performance analysis: Node and Bun.
Carmo, K. X., Ferreira, F., & Figueiredo, E. (2024). Performance Evaluation of Back-End Frameworks: A Comparative Study. Proceedings of the 20th Brazilian Symposium on Information Systems, 1–9. https://doi.org/10.1145/3658271.3658314
Diebold, P., Schmitt, A., & Theobald, S. (2018). Scaling agile. Proceedings of the 19th International Conference on Agile Software Development: Companion, 1–4. https://doi.org/10.1145/3234152.3234177
Fett, D., Kusters, R., & Schmitz, G. (2014). An Expressive Model for the Web Infrastructure: Definition and Application to the Browser ID SSO System. 2014 IEEE Symposium on Security and Privacy, 673–688. https://doi.org/10.1109/SP.2014.49
Glantz, I., & Hurtig, H. (2022). Express. js and Ktor web serverperformance: A comparative study.
Hafner, A., Mur, A., & Bernard, J. (2021). Node package manager’s dependency network robustness. ArXiv Preprint ArXiv:2110.11695. https://doi.org/10.48550/arXiv.2110.11695
Jiang, Z. M., & Hassan, A. E. (2015). A Survey on Load Testing of Large-Scale Software Systems. IEEE Transactions on Software Engineering, 41(11), 1091–1118. https://doi.org/10.1109/TSE.2015.2445340
Katz, E. D., Butler, M., & McGrath, R. (1994). A scalable HTTP server: The NCSA prototype. Computer Networks and ISDN Systems, 27(2), 155–164. https://doi.org/10.1016/0169-7552(94)90129-5
Martins, P., Tomé, P., Wanzeller, C., Sá, F., & Abbasi, M. (2021). Comparing Oracle and PostgreSQL, Performance and Optimization BT - Trends and Applications in Information Systems and Technologies (Á. Rocha, H. Adeli, G. Dzemyda, F. Moreira, & A. M. Ramalho Correia (eds.); pp. 481–490). Springer International Publishing.
Muhammed, T., Mehmood, R., Abozinadah, E., & Sharaf, S. (2020). SelecWeb: A Software Tool for Automatic Selection of Web Frameworks (pp. 329–346). https://doi.org/10.1007/978-3-030-13705-2_14
Nevedrov, D. (2006). Using jmeter to performance test web services. Published on Dev2dev, 1–11.
Qin, L., Yu, J. X., & Chang, L. (2009). Keyword search in databases. Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, 681–694. https://doi.org/10.1145/1559845.1559917
Shah, M., & Pujara, N. (2020). A review on software defects prediction methods. ArXiv Preprint ArXiv:2011.00998. https://doi.org/10.48550/arXiv.2011.00998
Smith, P. G. (2012). Professional website performance: optimizing the front-end and back-end. John Wiley & Sons.
Taley, D. S., & Pathak, B. (2020). Comprehensive study of software testing techniques and strategies: a review. Int. J. Eng. Res, 9(08), 817–822.
Wieber, N. (2020). Automated generation of client-specific backends utilizing existing microservices and architectural knowledge. Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, 1158–1160. https://doi.org/10.1145/3324884.3415283
Yu, M., Zhou, R., Cai, Z., Tan, C.-W., & Wang, H. (2020). Unravelling the relationship between response time and user experience in mobile applications. Internet Research, 30(5), 1353–1382. https://doi.org/10.1108/INTR-05-2019-0223
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Anjar Tiyo Saputro, Mega Novita

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.