Predicting Prospective Student Interests Using the C4.5 Algorithm and Naive Bayes

Authors

  • Ali Akbar Ritonga Universitas Labuhanbatu, Indonesia
  • Annisa Amanda
  • Elysa Rohayani Hasibuan Universitas Labuhanbatu, Indonesia

DOI:

10.33395/sinkron.v9i1.14441

Keywords:

C4.5 algorithm; Classification; Confusion Matrix; Machine Learning; Naïve Bayes Method;

Abstract

Students are individuals pursuing higher education at a university with the goal of enhancing their knowledge, skills, and character to succeed in the professional world and contribute to society. The purpose of this study is to analyze the factors that influence prospective students' interest in continuing their education using the C4.5 Algorithm and the Naïve Bayes Method. The importance of understanding prospective students' interest patterns is expected to help universities formulate more effective strategies. The purpose of this study is to determine how well the two methods classify data and understand the factors that most influence prospective students' decisions. The C4.5 Algorithm is known to be effective in building decision trees that are easy to interpret, while the Naïve Bayes Method has the advantage of handling datasets with independent attributes. This study uses the stages of data selection, data pre-processing, algorithm application, and model evaluation. The classification results obtained from the C4.5 Algorithm show that 132 data are included in the interest category and 8 data are not interested, while the Naïve Bayes Method produces 131 data of interest and 9 data are not interested. In conclusion, both methods have good accuracy levels, but the Naïve Bayes Method shows superiority in Recall value, while the C4.5 Algorithm excels in interpretation of results and clarity of classification patterns.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Abbas, S. A., Aslam, A., Rehman, A. U., Abbasi, W. A., Arif, S., & Kazmi, S. Z. H. (2020). K-Means and K-Medoids: Cluster Analysis on Birth Data Collected in City Muzaffarabad, Kashmir. IEEE Access, 8, 151847–151855. https://doi.org/10.1109/ACCESS.2020.3014021

Ahmed, N., Barczak, A. L. C., Rashid, M. A., & Susnjak, T. (2021). A parallelization model for performance characterization of Spark Big Data jobs on Hadoop clusters. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00499-7

Alam, A., Alana, D. A. F., & Juliane, C. (2023). Comparison Of The C.45 And Naive Bayes Algorithms To Predict Diabetes. Sinkron, 8(4), 2641–2650. https://doi.org/10.33395/sinkron.v8i4.12998

Anam, K., Nurhakim, B., & Juliane, C. (2022). Komparasi Algoritma Klasifikasi Data Mining Menggunakan Optimize Selection untuk PeInterestan Program Studi. Building of Informatics, Technology and Science (BITS), 4(2), 606–613. https://doi.org/10.47065/bits.v4i2.2160

Apriyani, M. E., Maskuri, R. A., Ratsanjani, M. H., Pramudhita, A. N., & Rawansyah, R. (2023). Digital Forensic Investigates Sexual Harassment on Telegram using Naïve Bayes. Sinkron, 8(3), 1409–1417. https://doi.org/10.33395/sinkron.v8i3.12514

Budiman, B. (2021). Perbandingan Algoritma Klasifikasi Data Mining untuk Penelusuran Interest Calon Mahasiswa Baru. Nuansa Informatika, 15(2), 37–52. https://doi.org/10.25134/nuansa.v15i2.4162

Esteban, A., Zafra, A., & Ventura, S. (2022). Data mining in predictive maintenance systems: A taxonomy and systematic review. In Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. https://doi.org/10.1002/widm.1471

Hasibuan, F. F., Dar, M. H., & Yanris, G. J. (2023). Implementation of the Naïve Bayes Method to determine the Level of Consumer Satisfaction. SinkrOn, 8(2), 1000–1011. https://doi.org/10.33395/sinkron.v8i2.12349

Irmayani, D., Sinaga, F. A., & Masrizal, M. (2023). Analysis of the Level of Public Satisfaction on the Tiktok Application as an E-Commerce. Sinkron, 8(4), 2579–2591. https://doi.org/10.33395/sinkron.v8i4.13040

Lakhdari, Y., Soldevila, E., Rezgui, J., & Renault, É. (2023). Detection of Plant Diseases in an Industrial Greenhouse: Development, Validation & Exploitation. 2023 International Symposium on Networks, Computers and Communications, ISNCC 2023. https://doi.org/10.1109/ISNCC58260.2023.10323932

Lubis, A. I., & Chandra, R. (2023). Forward Selection Attribute Reduction Technique for Optimizing Naïve Bayes Performance in Sperm Fertility Prediction. Sinkron, 8(1), 275–285. https://doi.org/10.33395/sinkron.v8i1.11967

Madjid, F. M., Ratnawati, D. E., & Rahayudi, B. (2023). Sentiment Analysis on App Reviews Using Support Vector Machine and Naïve Bayes Classification. Jurnal Dan Penelitian Teknik Informatika, 8(1), 556–562. Retrieved from https://doi.org/10.33395/sinkron.v8i1.12161

Maizura, S., Sihombing, V., & Dar, M. H. (2023). Analysis of the Decision Tree Method for Determining Interest in Prospective Student College. SinkrOn, 8(2), 956–979. https://doi.org/10.33395/sinkron.v8i2.12258

Mawaddah, A., Dar, M. H., & Yanris, G. J. (2023). Analysis of the SVM Method to Determine the Level of Online Shopping Satisfaction in the Community. SinkrOn, 8(2), 838–855. https://doi.org/10.33395/sinkron.v8i2.12261

Nas, C. (2021). Data Mining Prediksi Interest Calon Mahasiswa Memilih Perguruan Tinggi Menggunakan Algoritma C4.5. Jurnal Manajemen Informatika (JAMIKA), 11(2), 131–145. https://doi.org/10.34010/jamika.v11i2.5506

Nasution, R. F., Dar, M. H., & Nasution, F. A. (2023). Implementation of the Naïve Bayes Method to Determine Student Interest in Gaming Laptops. Sinkron, 8(3), 1709–1723. https://doi.org/10.33395/sinkron.v8i3.12562

Rahman, R., & Fauzi Abdulloh, F. (2023). Performance of Various Naïve Bayes Using GridSearch Approach In Phishing Email Dataset. Sinkron, 8(4), 2336–2344. https://doi.org/10.33395/sinkron.v8i4.12958

Rasela, F. (2022). Pengaruh Literasi Wakaf terhadap Interest Mahasiswa Berwakaf pada Forum Wakaf Mahasiswa Indonesia. Jurnal Riset Perbankan Syariah, 69–76. Retrieved from https://journals.unisba.ac.id/index.php/JRPS/article/view/969

Riansyah, M., Suwilo, S., & Zarlis, M. (2023). Improved Accuracy In Data Mining Decision Tree Classification Using Adaptive Boosting (Adaboost). SinkrOn, 8(2), 617–622. https://doi.org/10.33395/sinkron.v8i2.12055

Saleh, A., Dharshinni, N., Perangin-Angin, D., Azmi, F., & Sarif, M. I. (2023). Implementation of Recommendation Systems in Determining Learning Strategies Using the Naïve Bayes Classifier Algorithm. Sinkron, 8(1), 256–267. https://doi.org/10.33395/sinkron.v8i1.11954

Siregar, A. P., Irmayani, D., & Sari, M. N. (2023). Analysis of the Naïve Bayes Method for Determining Social Assistance Eligibility Public. SinkrOn, 8(2), 805–817. https://doi.org/10.33395/sinkron.v8i2.12259

Study, A. C. (2021). applied sciences Data Mining Techniques for Early Diagnosis of Diabetes : 1–12.

Supendar, H., Rusdiansyah, R., Suharyanti, N., & Tuslaela, T. (2023). Application of the Naïve Bayes Algorithm in Determining Sales Of The Month. SinkrOn, 8(2), 873–879. https://doi.org/10.33395/sinkron.v8i2.12293

Tanjung, J. P., Tampubolon, F. C., Panggabean, A. W., & Nandrawan, M. A. A. (2023). Customer Classification Using Naive Bayes Classifier With Genetic Algorithm Feature Selection. Sinkron, 8(1), 584–589. https://doi.org/10.33395/sinkron.v8i1.12182

Violita, P., Yanris, G. J., & Hasibuan, M. N. S. (2023). Analysis of Visitor Satisfaction Levels Using the K-Nearest Neighbor Method. SinkrOn, 8(2), 898–914. https://doi.org/10.33395/sinkron.v8i2.12257

Downloads


Crossmark Updates

How to Cite

Ritonga, A. A. ., Amanda, A., & Hasibuan, E. R. . (2025). Predicting Prospective Student Interests Using the C4.5 Algorithm and Naive Bayes. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 395-405. https://doi.org/10.33395/sinkron.v9i1.14441