A Business Intelligence: Enhancing Apache Superset Capabilities in PBB-P2 Receivables Monitoring

-

Authors

  • Sugeng Pranoto Universitas Pembangunan Panca Budi, Medan
  • Sri Wahyuni Universitas Pembangunan Panca Budi, Medan
  • Muhammad Syahputra Novelan Universitas Pembangunan Panca Budi, Medan

DOI:

10.33395/sinkron.v9i2.14611

Keywords:

Data Mining, Business Intelligence, K-Means, Java, Apache Superset

Abstract

PBB-P2 Tax Revenue plays an essential role in regional finance, but managing receivables and analyzing taxpayer compliance levels still face many challenges. Business Intelligence (BI) technologies such as Apache Superset are often used for interactive data visualization. Still, they have limitations in advanced analysis, especially the application of machine learning algorithms such as K-Means for data clustering. This research aims to overcome the limitations of Apache Superset by developing an external application-based solution using the Java programming language and the SMILE library. This application is designed to cluster the level of taxpayer compliance in a batch process, with the results stored in the MySQL database. The clustered data is then visualized using Apache Superset. The results show that integrating these external applications can improve the efficiency of data analysis by utilizing more complex clustering algorithms. Visualization of clustering results also allows for more effective management of PBB-P2. This approach not only expands the capabilities of Apache Superset but also contributes to supporting data-driven tax revenue optimization strategies. This research opens up further opportunities for the integration of BI tools with machine learning algorithms in monitoring and managing complex data in the tax sector

GS Cited Analysis

Downloads

Download data is not yet available.

References

Bany Mohammed, Ashraf, Manaf Al-Okaily, Dhia Qaism, and Mohammad Khalaf Al-Majali. 2024. “Towards an Understanding of Business Intelligence and Analytics Usage: Evidence from the Banking Industry.” International Journal of Information Management Data Insights 4(1): 100215. doi:10.1016/j.jjimei.2024.100215.

Fatha, Mafda Khoirotul, Seftin Fitri Ana Wati, Bhagas Satrya Dewa, and Krisna Eko Prasetyo. 2023. “Peran Big Data Pada Intelijen Bisnis Sebagai Sistem Pendukung Keputusan (Systematic Literature Review).” In Prosiding Seminar Nasional Teknologi Dan Sistem Informasi, Surabaya, 318–26. doi:https://doi.org/10.33005/sitasi.v3i1.612.

Gallego, Victor, Jessica Lingan, Alfons Freixes, Angel A. Juan, and Celia Osorio. 2024. “Applying Machine Learning in Marketing: An Analysis Using the NMF and k-Means Algorithms.” Information (Switzerland) 15(7): 1–16. doi:10.3390/info15070368.

Greca, Silvana, Ingrid Shehi, and Jonuz Nuhi. 2023. “Analyzing Climate Changes Impacts Using Big Data Hadoop.” CEUR Workshop Proceedings 3402: 21–27.

Iqbal, Muhammad, Sardo Pardingotan Sipayung, Alex Rikki Sinaga, and Paska Marto Hasugian. 2024. “Analysis of Student Achievement with K-Means on Socioeconomic , Behavioral , and Psychological Factors.” Jurnal Info Sains : Informatika dan Sains 14(04): 715–28. doi:10.54209/infosains.v14i04.

Macías, José A., and Clemente R. Borges. 2024. “Monitoring and Forecasting Usability Indicators: A Business Intelligence Approach for Leveraging User-Centered Evaluation Data.” Science of Computer Programming 234. doi:10.1016/j.scico.2023.103077.

Novelan, Muhammad Syahputra, Syahril Efendi, Poltak Sihombing, and Herman Mawengkang. 2023. “Optimation Cavacity Vehicle Routing Problem with K-Nearest Neighbor in Classification of Goods Ditribution Route.” In 2023 International Conference of Computer Science and Information Technology (ICOSNIKOM), IEEE, 1–6.

Putera, Andysah, Utama Siahaan, Muhammad Irsyad, Alviona Marsya, and M Dico Triyadi. 2024. “Application Of Business Intelligence in Decision Support in Providing Assistance to Business Actors in Deli Serdang Regency Using The Decision Tree Algoritm.” 1(3): 210–14. doi:10.30596/jitcse.

Putera, Andysah, Utama Siahaan, Ami Abdul Jabar, Sugeng Pranoto, and Sulis Sutiono. 2024. “Analysis of Property Tax Bill Classification Using the C4 . 5 Algorithm.” Journal of Information Technology, computer science and Electrical Engineering (JITCSE) 1(3): 181–85. doi:10.30596/jitcse.

Putra, Purwa Hasan, Zulfahmi Syahputra, and Muhammad Syahputra Novelan. 2021. “Application Of The K-Means Algorithm In Identifying.” Jurnal Infokum 9(2): 281–86.

Putra, Purwa Hasan, Zulfahmi Syahputra, Muhammad Syahputra Novelan, Panca Budi, Sumatera Utara, and Article Info. 2021. “Application Of The K-Means Algorithm In Identifying Types Of Skin Disease.” Jurnal Infokum 9(2): 281–86.

S.Pranoto and D.Nasution. 2024. “Business Intelligence Menggunakan Apache Superset Untuk Sistem Pendukung Keputusan Kebijakan Penagihan Pajak Bumi Dan Bangunan : Studi Kasus BPKPD Kota Tebing Tinggi.” Indonesian Journal of Education 2(3): 154–60.

Sitorus, Zulham, Sugeng Pranoto, and Sulis Sutiono. 2024. “Comparison of Accuracy between Naïve Bayes and Decision Tree Methods for Property Tax ( PBB-P2 ) Compliance in Tebing Tinggi City.” Journal of Information Technology, computer science and Electrical Engineering (JITCSE) 1(2): 121–28. doi:10.61306/jitcse.v1i2.

Superset, Apache. 2024. “Apache Software Foundation.” URL: https://superset. apache. org/[accessed 2022-03-10].

Tavera Romero, Carlos Andrés, Jesús Hamilton Ortiz, Osamah Ibrahim Khalaf, and Andrea Ríos Prado. 2021. “Business Intelligence: Business Evolution after Industry 4.0.” Sustainability (Switzerland) 13(18): 1–12. doi:10.3390/su131810026.

Wahyuni, Sri. 2018. “Implementation of Data Mining to Analyze Drug Cases Using C4.5 Decision Tree.” Journal of Physics: Conference Series 970(1). doi:10.1088/1742-6596/970/1/012030.

Wahyuni, Sri, and Murni Marbun. 2020. “Implementation of Data Mining in Predicting the Study Period of Student Using the Naïve Bayes Algorithm.” IOP Conference Series: Materials Science and Engineering 769(1). doi:10.1088/1757-899X/769/1/012039.

Wahyuni, Sri, Muhammad Zarlis, Solikhun, Deny Jollyta, M. Safii, and Indri Sulistianingsih. 2019. “Implementation of MD Heuristic Method for Classifying Numerical Data in Data Preprocessing.” Journal of Physics: Conference Series 1255(1). doi:10.1088/1742-6596/1255/1/012060.

Weichbroth, Paweł, Jozef Zurada, and Celina M. Olszak. 2024. “Exploring the Benefits, Challenges, and Opportunities of Collaborative Business Intelligence.” Proceedings of the Annual Hawaii International Conference on System Sciences 1: 278–87.

Wijerathne, Isanka. 2024. “Empowering Educational Researchers with a Privacy-Centric Data Platform : Design , Implementation , and Implications.” Conference: The 32nd International Conference on Computers in Education (ICCE 2024) (December).

Zhao, Wan Lei, Cheng Hao Deng, and Chong Wah Ngo. 2018. “K-Means: A Revisit.” Neurocomputing 291: 195–206. doi:10.1016/j.neucom.2018.02.072.

Downloads


Crossmark Updates

How to Cite

Pranoto, S., Wahyuni, S. ., & Novelan , M. S. . (2025). A Business Intelligence: Enhancing Apache Superset Capabilities in PBB-P2 Receivables Monitoring: -. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(2), 746-754. https://doi.org/10.33395/sinkron.v9i2.14611