Implementation of Support Vector Machine Algorithm for Heart Disease Risk Identification Using Signal Electrocardiogram

Authors

  • Fahriza Shiddik Universitas Prima Indonesia
  • Bagas Andhika
  • Yennimar
  • Grisela Sangap Damayanti Saragih
  • Gabriella Br. Surbakti

DOI:

10.33395/sinkron.v9i2.14642

Keywords:

Support Vector Machine, Heart Disease, Electrocardiogram, Risk Identification, Classification

Abstract

: In the medical world, one of the biggest contributors to death in the world is heart disease. Early detection of the risk of heart disease can increase the chances of recovery and reduce mortality. This research applies the Support Vector Machine (SVM) algorithm to identify the risk of heart disease using Electrocardiogram Signals. The ECG data used was taken from a public database that contained a record of information on the electrical activity of the heart of patients with various heart health conditions. The Support Vector Machine algorithm is applied to classify ECG signals into 2 main classes, namely normal conditions and at-risk conditions. Several methods in data processing, including data normalization and feature selection are used to improve the accuracy and success of the model. The results of the evaluation with this method resulted in accuracy, precision, recall and also F1-score showed that the modeling of this algorithm produced a fairly good classification, with an accuracy of more than 90% in the identification of heart disease risk. This study shows the potential use of this algorithm in automatically detecting the risk of heart disease based on ECG signals, which can be a tool in medical diagnosis. The results show that implementing the SVM strategi with the RBF kernel appears to be a very easy execution when compared to the direct part. An important component that affects the adequacy of an SVM strategy is the parameters of the section and the way the information is handled.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Damasela, R, B. P. Tomasouw, and Z. A. Leleury. 2022. “Penerapan Metode Support Vector Machine (Svm) Untuk Mendeteksi Penyalahgunaan Narkoba.” PARAMETER: Jurnal Matematika, Statistika dan Terapannya 1(2): 111–22. doi:10.30598/parameterv1i2pp111-122.

Eka Patriya, Eka. 2020. “Implementasi Support Vector Machine Pada Prediksi Harga Saham Gabungan (Ihsg).” Jurnal Ilmiah Teknologi dan Rekayasa 25(1): 24–38. doi:10.35760/tr.2020.v25i1.2571.

Faruk, Muhammad, and Nur Nafi’iyah. 2020. “Klasifikasi Kanker Kulit Berdasarkan Fitur Tekstur, Fitur Warna Citra Menggunakan SVM Dan KNN.” Telematika 13(2): 100–109.

Fauzi, Ahmad, Eko Harli, and Tria Hadi Kusmanto. 2023. “RESOLUSI : Rekayasa Teknik Informatika Dan Informasi Analisis Sentimen Wacana Penerapan Jalan Berbayar Di Jakarta Menggunakan Algoritma SVM.” Media Online) 3(6): 435. https://djournals.com/resolusi.

Maneno, Regolinda, Budiman Baso, Patricia G. Manek, and Kristoforus Fallo. 2023. “Deteksi Tingkat Kematangan Buah Pinang Menggunakan Metode Support Vector Machine Berdasarkan Warna Dan Tekstur.” Journal of Information and Technology 3(2): 60–66. doi:10.32938/jitu.v3i2.5323.

Manik, Geyessella, Iin Ernawati, and Ika Nurlaili. 2021. “ANALISIS SENTIMEN PADA REVIEW PENGGUNA E-COMMERCE BIDANG PANGAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (Studi Kasus: Review Sayurbox Dan Tanihub Pada Google Play).” Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya 2(2): 64–74. https://conference.upnvj.ac.id/index.php/senamika/article/view/1630.

Maulidah, Nurlaelatul, Riki Supriyadi, Dwi Yuni Utami, Fuad Nur Hasan, Ahmad Fauzi, and Ade Christian. 2021. “Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine Dan Naive Bayes.” Indonesian Journal on Software Engineering (IJSE) 7(1): 63–68. doi:10.31294/ijse.v7i1.10279.

Muhammadiyah, Universitas, Mahakarya Aceh, and Universitas Bina Nusantara. 2024. “Penggunaan Algoritma Support Vector Machine ( SVM ) Untuk Deteksi Penipuan Pada Transaksi Online.” 13: 1627–32.

Naim, Muhammad, Abd Rajab, and Muhammad Alip. 2020. “Esensi Metode Pembelajaran Perspektif Pendidikan Islam (Essence of Islamic Education Perspective Learning Method).” ISTIQRA’: Jurnal Pemikiran Dan Pendidikan Islam 7(2): 74–88. https://jurnal.umpar.ac.id/index.php/istiqra/article/view/514/418.

Niendy Alexandra Yosephine, and Ratnadewi. 2021. “Penggunaan Artificial Neural Network Pada Sinyal Elektrokardiogram Untuk Mendeteksi Penyakit Jantung Aritmia Supraventrikular.” INFORMASI (Jurnal Informatika dan Sistem Informasi) 13(1): 14–23. doi:10.37424/informasi.v13i1.69.

Pratiwi, Dyah Ayu, Achmad Rizal, and Rita Magdalena. 2020. “Aplikasi Stockwell Transforms Dan K-Nearest Neighbor Untuk Klasifikasi Sinyal Elektrokardiogram.” AITI : Jurnal Teknologi Informasi 17(1): 22–32.

Primadevi, Ferawidya, and Yahya Mardiana. 2023. “Uji Kinerja Sistem Denoising Sinyal Jantung Atau EKG Dengan Menggunakan Algoritma Empirical Mode Decomposition (EMD).” Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi 5: 27–34. doi:10.35814/asiimetrik.v5i1.3682.

Rusman, Juprianus, and Nofrianto Pasae. 2023. “Prototype Sistem Penyortir Buah Kopi Arabika Berdasarkan Tingkat Kematangan Menggunakan Metode Support Vector Machine.” Teknika 12(1): 65–72. doi:10.34148/teknika.v12i1.602.

Suryana, Yaya, and Rafi Aziz. 2018. “Sistem Pemonitor Detak Jantung Portable Menggunakan Tiga Sensor Elektroda.” JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI 4(1): 14. doi:10.36722/sst.v4i1.240.

Tsuroyya, Feni Atika, Khotimah Nur Ramadhani, and Elsa Oktavia Ramadhani. 2025. “Tinjauan Organ Jantung Sebagai Pusat Kehidupan Dalam Sistem Kardiovaskular.” 3.

Downloads


Crossmark Updates

How to Cite

Shiddik, F., Bagas Andhika, Yennimar, Grisela Sangap Damayanti Saragih, & Gabriella Br. Surbakti. (2025). Implementation of Support Vector Machine Algorithm for Heart Disease Risk Identification Using Signal Electrocardiogram. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(2), 637-643. https://doi.org/10.33395/sinkron.v9i2.14642