Beyond Traditional QoS Management- Harnessing Machine Learning for Predictive Network Service Optimization
DOI:
10.33395/sinkron.v9i2.14664Keywords:
Deep Learning, Latency, Machine Learning, Network Performance, Quality of Service (QoS)Abstract
Quality of Service (QoS) is a fundamental aspect of modern computer networks, directly influencing performance and user experience. Key parameters such as latency, throughput, packet loss, and jitter play crucial roles in determining network efficiency. Traditional QoS management approaches, often rule-based or heuristic-driven, lack adaptability to dynamic network conditions. This study explores the application of machine learning techniques to predict QoS using historical network data, enabling proactive network optimization. We employ multiple predictive models, including linear regression, random forest, and deep learning, to analyze network performance trends and forecast QoS degradation. Experimental results demonstrate that machine learning significantly enhances prediction accuracy compared to conventional methods, allowing for more effective resource allocation and congestion control. The findings highlight the potential of data-driven approaches in real-time network management, reducing latency fluctuations and improving service reliability. Moreover, deep learning models outperform traditional statistical techniques in recognizing complex patterns within network data, making them a promising solution for next-generation network optimization. The proposed methodology not only improves predictive accuracy but also offers a scalable framework for automated QoS management in cloud computing, IoT, and 5G environments. Future work will focus on refining model generalization across diverse network conditions and integrating federated learning for privacy-preserving QoS predictions. This research underscores the transformative role of machine learning in enhancing network service quality and operational efficiency.
Downloads
References
Abdollahzadeh, M., Khosravi, M., Hajipour Khire Masjidi, B., Samimi Behbahan, A., Bagherzadeh, A., Shahkar, A., & Tat Shahdost, F. (2022). Estimating the density of deep eutectic solvents applying supervised machine learning techniques. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-08842-5
Adhikari, M., & Amgoth, T. (2018). Multi-Objective Accelerated Particle Swarm Optimization Technique for Scientific workflows in IaaS cloud. 2018 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2018, 1448–1454. https://doi.org/10.1109/ICACCI.2018.8554584
Ardagna, D., Ciavotta, M., Lancellotti, R., & Guerriero, M. (n.d.). A Hierarchical Receding Horizon Algorithm for QoS-driven control of Multi-IaaS Applications.
Aritonang, P. A., Johan, M. E., & Prasetiawan, I. (2022). Aspect-Based Sentiment Analysis on Application Review using CNN (Case Study : Peduli Lindungi Application). Ultima Infosys : Jurnal Ilmu Sistem Informasi, 13(1).
Assegie, T. A., Rangarajan, P. K., Kumar, N. K., & Vigneswari, D. (2022). An empirical study on machine learning algorithms for heart disease prediction. IAES International Journal of Artificial Intelligence, 11(3), 1066–1073. https://doi.org/10.11591/ijai.v11.i3.pp1066-1073
Astrakhantsev, A. A., Globa, L. S., Davydiuk, A. M., & Sushko, O. V. (n.d.). ADJUSTING THE PARAMETERS OF MACHINE LEARNING ALGORITHMS TO IMPROVE THE SPEED AND ACCURACY OF TRAFFIC CLASSIFICATION.
Bheda, H. A., & Lakhani, J. (2012). QoS and performance optimization with VM provisioning approach in cloud computing environment. 3rd Nirma University International Conference on Engineering, NUiCONE 2012. https://doi.org/10.1109/NUICONE.2012.6493187
Calheiros, R. N., Ranjany, R., & Buyya, R. (2011). Virtual machine provisioning based on analytical performance and QoS in cloud computing environments. Proceedings of the International Conference on Parallel Processing, 295–304. https://doi.org/10.1109/ICPP.2011.17
Chaisiri, S., Lee, B.-S., & Niyato, D. (n.d.). Robust Cloud Resource Provisioning for Cloud Computing Environments.
Chaturvedi, V., & de Vries, W. T. (2021). Machine Learning Algorithms for Urban Land Use Planning: A Review. In Urban Science (Vol. 5, Issue 3). MDPI. https://doi.org/10.3390/urbansci5030068
Chen, Y., Huang, J., Lin, C., & Shen, X. (2019). Multi-objective service composition with QoS dependencies. IEEE Transactions on Cloud Computing, 7(2), 537–552. https://doi.org/10.1109/TCC.2016.2607750
Dhiman, P., Ma, J., Navarro, C. A., Speich, B., Bullock, G., Damen, J. A., Kirtley, S., Hooft, L., Riley, R. D., Van Calster, B., Moons, K. G. M., & Collins, G. S. (2021). Reporting of prognostic clinical prediction models based on machine learning methods in oncology needs to be improved. Journal of Clinical Epidemiology, 138, 60–72. https://doi.org/10.1016/j.jclinepi.2021.06.024
Dong, R., She, C., Hardjawana, W., Li, Y., & Vucetic, B. (2021). Deep Learning for Radio Resource Allocation with Diverse Quality-of-Service Requirements in 5G. IEEE Transactions on Wireless Communications, 20(4), 2309–2324. https://doi.org/10.1109/TWC.2020.3041319
Elvin, & Wibowo, A. (2024). Forecasting water quality through machine learning and hyperparameter optimization. Indonesian Journal of Electrical Engineering and Computer Science, 33(1), 496–506. https://doi.org/10.11591/ijeecs.v33.i1.pp496-506
Evangelinou, A., Ciavotta, M., Ardagna, D., Kopaneli, A., Kousiouris, G., & Varvarigou, T. (2018). Enterprise applications cloud rightsizing through a joint benchmarking and optimization approach. Future Generation Computer Systems, 78, 102–114. https://doi.org/10.1016/j.future.2016.11.002
Fiesta, M. M., Palaoag, T. D., & Mayormente, M. D. (2024). Improving Abiotic Stress Mitigation via Predictive Modeling of Water Quality Parameters in Recirculated Aquaculture Systems. In J. Electrical Systems (Vol. 20, Issue 3). https://orcid.org/0000-
Fu, M., Zhang, C., Hu, C., Wu, T., Dong, J., & Zhu, L. (2023). Achieving Verifiable Decision Tree Prediction on Hybrid Blockchains. Entropy, 25(7). https://doi.org/10.3390/e25071058
Ghawi, R., & Pfeffer, J. (2019). Efficient Hyperparameter Tuning with Grid Search for Text Categorization using kNN Approach with BM25 Similarity. Open Computer Science, 9(1), 160–180. https://doi.org/10.1515/comp-2019-0011
Gill, S. S., Buyya, R., Chana, I., Singh, M., & Abraham, A. (2018). BULLET: Particle Swarm Optimization Based Scheduling Technique for Provisioned Cloud Resources. Journal of Network and Systems Management, 26(2), 361–400. https://doi.org/10.1007/s10922-017-9419-y
Hameed, A., Violos, J., Leivadeas, A., Santi, N., Grünblatt, R., Leivadeas Senior Member, A., & Mitton Member, N. (n.d.). Towards QoS Prediction based on Temporal Transformers for IoT Applications. https://hal.science/hal-03828639v1
Hayyolalam, V., & Pourhaji Kazem, A. A. (2018). A systematic literature review on QoS-aware service composition and selection in cloud environment. In Journal of Network and Computer Applications (Vol. 110, pp. 52–74). Academic Press. https://doi.org/10.1016/j.jnca.2018.03.003
He, F., Sato, T., Chatterjee, B. C., Kurimoto, T., Urushidani, S., & Oki, E. (2022). Robust Optimization Model for Primary and Backup Resource Allocation in Cloud Providers. IEEE Transactions on Cloud Computing, 10(4), 2920–2935. https://doi.org/10.1109/TCC.2021.3051018
Huang, Y. (2024). Comparison Of 6 Machine Learning Models in Estimating Population Growth. In Highlights in Science, Engineering and Technology CSIC (Vol. 2023).
Hummer, W., Muthusamy, V., Rausch, T., Dube, P., El Maghraoui, K., Murthi, A., & Oum, P. (2019). ModelOps: Cloud-based lifecycle management for reliable and trusted AI. Proceedings - 2019 IEEE International Conference on Cloud Engineering, IC2E 2019, 113–120. https://doi.org/10.1109/IC2E.2019.00025
Jiang, W., Lee, D., & Hu, S. (2012). Large-scale longitudinal analysis of SOAP-based and RESTful web services. Proceedings - 2012 IEEE 19th International Conference on Web Services, ICWS 2012, 218–225. https://doi.org/10.1109/ICWS.2012.45
Kevin, S., Singh, S. K., Bhola, H., & Singh, K. (2025). Water Quality Assessment using Ensemble Learning: Comparative Analysis of Stacking Classifiers for Agricultural Suitability. https://doi.org/10.21203/rs.3.rs-5766507/v1
Li, H., Tong, J., Weng, S., Dong, X., & He, T. (2019). Detecting a Business Anomaly Based on QoS Benchmarks of Resource-service Chains for Collaborative Tasks in the IoT. IEEE Access, 7, 165509–165519. https://doi.org/10.1109/ACCESS.2019.2953283
Liang, M., An, B., Li, K., Du, L., Deng, T., Cao, S., Du, Y., Xu, L., Gao, X., Zhang, L., Li, J., & Gao, H. (2022). Improving Genomic Prediction with Machine Learning Incorporating TPE for Hyperparameters Optimization. Biology, 11(11). https://doi.org/10.3390/biology11111647
Lopez-Martin, M., Carro, B., & Sanchez-Esguevillas, A. (2019). Neural network architecture based on gradient boosting for IoT traffic prediction. Future Generation Computer Systems, 100, 656–673. https://doi.org/10.1016/j.future.2019.05.060
Nouruzi, A., Zakeri, A., Javan, M. R., Mokari, N., Hussain, R., & Kazmi, S. M. A. (2022). Online Service Provisioning in NFV-Enabled Networks Using Deep Reinforcement Learning. IEEE Transactions on Network and Service Management, 19(3), 3276–3289. https://doi.org/10.1109/TNSM.2022.3159670
Preciado-Velasco, J. E., Gonzalez-Franco, J. D., Anias-Calderon, C. E., Nieto-Hipolito, J. I., & Rivera-Rodriguez, R. (2021). 5G/B5G service classification using supervised learning. Applied Sciences (Switzerland), 11(11). https://doi.org/10.3390/app11114942
Qiu, H., Luo, L., Su, Z., Zhou, L., Wang, L., & Chen, Y. (2020). Machine Learning Approaches to Predict Peak Demand Days of Cardiovascular Admissions Considering Environmental Exposure. https://doi.org/10.21203/rs.2.19636/v3
Shi, L. lei, Liu, L., Jiang, L., Zhu, R., & Panneerselvam, J. (2022). QoS prediction for smart service management and recommendation based on the location of mobile users. Neurocomputing, 471, 12–20. https://doi.org/10.1016/J.NEUCOM.2021.02.107
Takyi, K., Bagga, A., & Gupta, P. (2019). A semi-supervised qos-aware classification for wide area networks with limited resources. International Journal of Innovative Technology and Exploring Engineering, 8(11), 970–981. https://doi.org/10.35940/ijitee.H7185.0981119
Wainer, J., & Fonseca, P. (2020). How to tune the RBF SVM hyperparameters?: An empirical evaluation of 18 search algorithms. http://arxiv.org/abs/2008.11655
Woźnicki, P., Westhoff, N., Huber, T., Riffel, P., Froelich, M. F., Gresser, E., von Hardenberg, J., Mühlberg, A., Michel, M. S., Schoenberg, S. O., & Nörenberg, D. (2020). Multiparametric MRI for prostate cancer characterization: Combined use of radiomics model with PI-RADS and clinical parameters. Cancers, 12(7), 1–14. https://doi.org/10.3390/cancers12071767
Yan, C., & Yu, Y. (2012). The quality prediction in small-batch producing process based on weighted least squares support vector regression. Advanced Materials Research, 542–543, 411–415. https://doi.org/10.4028/www.scientific.net/AMR.542-543.411
Yang, Q., Fan, X., Cao, X., Hao, W., Lu, J., Wei, J., Tian, J., Yin, M., & Ge, L. (2023). Reporting and risk of bias of prediction models based on machine learning methods in preterm birth: A systematic review. In Acta Obstetricia et Gynecologica Scandinavica (Vol. 102, Issue 1, pp. 7–14). John Wiley and Sons Inc. https://doi.org/10.1111/aogs.14475
Zhan, B. (2024). Forecasting red wine quality: A comparative examination of machine learning approaches. Applied and Computational Engineering, 32(1), 58–65. https://doi.org/10.54254/2755-2721/32/20230184
Zhang, X., Yan, L.-F., Hu, Y.-C., Li, G., Yang, Y., Han, Y., Sun, Y.-Z., Liu, Z.-C., Tian, Q., Han, Z.-Y., Liu, L.-D., Hu, B.-Q., Qiu, Z.-Y., Wang, W., & Cui, G.-B. (2017). Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. www.impactjournals.com/oncotarget
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Arvin Mareta, Irwin Sakti, Handri Santoso

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.