Comparative Analysis of SVM and BERT for Sentiment and Sarcasm Detection in the Boycott of Israeli Products on Platform X

Authors

  • Siti Sarah Sabrina Digital Business Departement, Garut University, Garut, Indonesia
  • Diqy Fakhrun Shiddieq Digital Business Departement, Garut University, Garut, Indonesia
  • Fikri Fahru Roji Digital Business Departement, Garut University, Garut, Indonesia

DOI:

10.33395/sinkron.v9i2.14723

Keywords:

BERT, Classification, Sarcasm detection, Sentiment analysis, SVM

Abstract

The Israel-Palestine conflict has triggered a global consumer movement, including a widespread boycott of Israeli-affiliated products in Indonesia. As this campaign gains momentum on digital platforms like X (formerly Twitter), understanding public sentiment becomes crucial—not only for gauging public opinion but also for anticipating potential socio-economic impacts. This study evaluates the effectiveness of two sentiment analysis models—Support Vector Machine (SVM) and Bidirectional Encoder Representations from Transformers (BERT)—in classifying sentiment and detecting sarcasm related to the boycott campaign. A total of 5,637 Indonesian-language tweets were manually labeled into positive, neutral, and negative categories, with sarcasm detection performed using a fine-tuned IndoBERT, model which classified tweets into two categories: sarcastic

and non-sarcastic. The models were assessed using accuracy, precision, recall, F1-score, and computational efficiency. Results show that BERT outperforms SVM in both sentiment classification (accuracy: 69.26% vs. 64.58%; F1-score: 69.47% vs. 62.40%) and sarcasm detection (accuracy: 92.20% vs. 86.15%; F1-score: 92.38% vs. 85.27%). However, BERT requires significantly longer processing times 194.76 seconds for sentiment classification and 191.92 seconds for sarcasm detection, while SVM required only 18.81 seconds and 10.99 seconds. These findings highlight a trade-off between contextual comprehension and real-time efficiency. Future research may explore ensemble methods or threshold-tuning to optimize this balance. The practical implications of this research lie in its application for real-time public discourse monitoring and data-driven policy development. By improving the detection of nuanced expressions such as sarcasm, this study contributes to more accurate sentiment interpretation in polarized digital environments.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ahmed Khan, T., Sadiq, R., Shahid, Z., Alam, M. M., & Mohd Su’ud, M. (2024). Sentiment Analysis using Support Vector Machine and Random Forest. Journal of Informatics and Web Engineering, 3(1), 67–75. https://doi.org/10.33093/jiwe.2024.3.1.5

Andriawan, M. G., & Ernawati, T. (2024). PENGGUNAAN ALGORITMA NAÏVE BAYES DAN SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN KONFLIK PALESTINA DAN ISRAEL PADA PLATFORM X. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3). https://doi.org/10.23960/jitet.v12i3.4943

Aniket, G., Pratik, M. M., Lukesh, N. O., & Atharva, R. Y. (2024). Sentiments of public opinion. International Research Journal of Modernization in Engineering Technology and Science.

Azra, F. A. Z., Yudhianti, O., & Chrisworo, O. P. (2023). PERBANDINGAN AKSI, REAKSI, DAN HUBUNGAN INTERNASIONAL BERBAGAI NEGARA TERHADAP KONFLIK MUSLIM RONGHYA-MYANMAR DAN MUSLIM PALESTINA-ISRAEL.

Bhargava, N., Radaideh, M. I., Kwon, O. H., Verma, A., & Radaideh, M. I. (2025). On the Impact of Language Nuances on Sentiment Analysis with Large Language Models: Paraphrasing, Sarcasm, and Emojis.

Bold, R., Al-Khateeb, H., & Ersotelos, N. (2022). Reducing False Negatives in Ransomware Detection: A Critical Evaluation of Machine Learning Algorithms. Applied Sciences, 12(24), 12941. https://doi.org/10.3390/app122412941

Couvy-Duchesne, B., Zhang, F., Kemper, K. E., Sidorenko, J., Wray, N. R., Visscher, P. M., Colliot, O., & Yang, J. (2020). Linear Mixed Models Minimise False Positive Rate and Enhance Precision of Mass Univariate Vertex-Wise Analyses of Grey-Matter. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 404–407. https://doi.org/10.1109/ISBI45749.2020.9098719

Dwiki, A., Putra, A., & Juanita, S. (2021). Analisis Sentimen Pada Ulasan Pengguna Aplikasi Bibit Dan Bareksa Dengan Algoritma KNN. Jurnal Teknik Informatika Dan Sistem Informasi, 8(2), 636–646. http://jurnal.mdp.ac.id

ElMassry, A. M., Alshamsi, A., Abdulhameed, A. F., Zaki, N., & Belkacem, A. N. (2024). Machine Learning Approaches for Sentiment Analysis on Balanced and Unbalanced Datasets. 2024 IEEE 14th International Conference on Control System, Computing and Engineering (ICCSCE), 18–23. https://doi.org/10.1109/ICCSCE61582.2024.10695972

Fadlil, A., Riadi, I., & Andrianto, F. (2024). Improving Sentiment Analysis in Digital Marketplaces through SVM Kernel Fine-Tuning. International Journal of Computing and Digital Systems, 16(1), 159–171. https://doi.org/10.12785/ijcds/160113

Fatimah Azzahro, S. (2024). SENTIMENT ANALYSIS ON BOYCOTT MOVEMENT: NVIVO APPROACH (Vol. 13, Issue 2). https://doi.org/https://doi.org/10.46367/iqtishaduna.v13i2.2185

Fitrianto, R. A., & Editya, A. S. (2024). Klasifikasi Tweet Sarkasme Pada Platform X Menggunakan Bidirectional Encoder Representations from Transformers. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(3), 366–371. https://doi.org/10.47233/jteksis.v6i3.1344

González-Carvajal, S., & Garrido-Merchán, E. C. (2020). Comparing BERT against traditional machine learning text classification. Journal of Computational and Cognitive Engineering, 2(4), 352–356. https://doi.org/10.47852/bonviewJCCE3202838

Imawan, F., Shiddieq, D. F., & Roji, F. F. (2025). Analisis Sentimen Publik di X Terhadap Rencana Kenaikan PPN 12% Menggunakan Bert. CESS (Journal of Computer Engineering, System and Science), 10(1), 136. https://doi.org/10.24114/cess.v10i1.66455

J, Dr. B. (2024). A STUDY AND DEVELOPMENT OF APPLICATION ON SENTIMENT ANALYSIS. International Scientific Journal of Engineering and Management, 03(03), 1–7. https://doi.org/10.55041/ISJEM01354

Jannah, N. Z. B., & Kusnawi, K. (2024). Comparison of Naïve Bayes and SVM in Sentiment Analysis of Product Reviews on Marketplaces. Sinkron, 8(2), 727–733. https://doi.org/10.33395/sinkron.v8i2.13559

Ma’aly, A. N., Pramesti, D., Fathurahman, A. D., & Fakhrurroja, H. (2024). Exploring Sentiment Analysis for the Indonesian Presidential Election Through Online Reviews Using Multi-Label Classification with a Deep Learning Algorithm. Information, 15(11), 705. https://doi.org/10.3390/info15110705

Mantik, J., & Singgalen, Y. A. (2024). Performance evaluation of SVM with synthetic minority over-sampling technique in sentiment classification. In Mantik Journal (Vol. 8, Issue 1). Online.

Novianti, D. N., Shiddieq, D. F., Roji, F. F., & Susilawati, W. (2024). Komparasi Algoritma Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Metaverse. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 231–239. https://doi.org/10.57152/malcom.v4i1.1061

O. Slim, S., Elsayed Aboutabl, A., & Derbala Yacoub, A. (2024). A Survey of Sentiment Analysis and Sarcasm Detection. International Journal of Electrical and Computer Engineering Systems, 15(1), 69–78. https://doi.org/10.32985/ijeces.15.1.7

Pandey, R., & Singh, J. P. (2023). BERT-LSTM model for sarcasm detection in code-mixed social media post. Journal of Intelligent Information Systems, 60(1), 235–254. https://doi.org/10.1007/s10844-022-00755-z

Patsiaouras, G. (2022). Marketplace cultures for social change? New social movements and consumer culture theory. Journal of Marketing Management, 38(1–2), 17–47. https://doi.org/10.1080/0267257X.2021.1996443

Prasetyo, B., Ahmad Yusuf Al-Majid, & Suharjito. (2024). A Comparative Analysis of MultinomialNB, SVM, and BERT on Garuda Indonesia Twitter Sentiment. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 12(2), 445–454. https://doi.org/10.33558/piksel.v12i2.9966

Putra Selian, R. I., Vitianingsih, A. V., Kacung, S., Lidya Maukar, A., & Febrian Rusdi, J. (2024). Sentiment Analysis of Public Responses on Social Media to Satire Joke Using Naive Bayes and KNN. Sinkron, 8(3), 1443–1451. https://doi.org/10.33395/sinkron.v8i3.13721

Putri Paath, R. N., Suprapto, A. Q., Hayunaji, H., & Irfandianto, M. E. (2024). Political Labeling on Social Media: a Netnographic Study of “SDM Rendah” in Indonesia’s 2024 Presidential Election on X (Twitter). Eduvest - Journal of Universal Studies, 4(10), 8798–8811. https://doi.org/10.59188/eduvest.v4i10.38818

Rewatkar, B., Barhate, A., & Verma, P. (2024). Application of Machine Learning Algorithms for Analyzing Sentiments Using Twitter Dataset. 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), 1392–1397. https://doi.org/10.1109/ICSCSS60660.2024.10624990

Richardson, E., Trevizani, R., Greenbaum, J. A., Carter, H., Nielsen, M., & Peters, B. (2024). The receiver operating characteristic curve accurately assesses imbalanced datasets. Patterns, 5(6), 100994. https://doi.org/10.1016/j.patter.2024.100994

Riyanto, S., Sitanggang, I. S., Djatna, T., & Atikah, T. D. (2023). Comparative Analysis using Various Performance Metrics in Imbalanced Data for Multi-class Text Classification. International Journal of Advanced Computer Science and Applications, 14(6). https://doi.org/10.14569/IJACSA.2023.01406116

Sanwal, M., & Mamoon Mazhar, M. (2023). Performance Comparison of Machine Learning and Deep Learning Models for Sentiment Analysis of Hotel Reviews. International Journal of Information Technology and Applied Sciences, 5(1), 2709–2208. https://doi.org/10.5281/zenodo.8225185

Seki, Y. (n.d.). Citizen Sentiment Analysis. www.intechopen.com

Sharma, D. K., Singh, B., Agarwal, S., Kim, H., & Sharma, R. (2022). Sarcasm Detection over Social Media Platforms Using Hybrid Auto-Encoder-Based Model. Electronics, 11(18), 2844. https://doi.org/10.3390/electronics11182844

Sharma, M., Kushwaha, R., & Srivastava, Mr. A. (2024). Sarcasm Detection on Social Media: Addressing the Issues of Short and Long Texts Using Machine Learning and Deep Learning Approaches. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 08(008), 1–8. https://doi.org/10.55041/IJSREM37364

Singgalen, Y. A. (2024a). Sentiment Classification of Food Influencer Content Reviews using Support Vector Machine Model through CRISP-DM Framework. Jurnal Sistem Komputer Dan Informatika (JSON), 5(3), 517. https://doi.org/10.30865/json.v5i3.7509

Singgalen, Y. A. (2024b). Sentiment Classification Using BERT-CNN and SMOTE: A Case Study on Hotel Reviews Dataset. Technology and Science (BITS), 6(3). https://doi.org/10.47065/bits.v6i3.6309

Syafia, A. N., Hidayattullah, M. F., & Suteddy, W. (2023). Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS. Jurnal Informatika: Jurnal Pengembangan IT (JPIT), 8(3).

Tan, K. L., Lee, C. P., & Lim, K. M. (2023). A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research. In Applied Sciences (Switzerland) (Vol. 13, Issue 7). MDPI. https://doi.org/10.3390/app13074550

Thomas, S., Informasi, T., & Shanti Bhuana, I. (2021). Studi Analisis Metode Analisis Sentimen pada YouTube. JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY), 1(1).

Wahdiyana, F., Permata Sari, S., Palupi Muslikhah, F., Ernawati, E., Pradia Nirwana, T., Ilmu Dakwah dan Komunikasi, F., & Agama Islam Sahid Bogor, I. (n.d.). STRATEGI PENCEGAHAN PENGGUNAAN PRODUK ISRAEL DALAM GERAKAN SOLIDARITAS TERHADAP PALESTINA DI KP. TEGAL WARU KECAMATAN CIAMPEA. http://jurnal-inais.id/index.php/SDDJ

Wang, T. (2024). A BERT-based with fuzzy logic sentimental classifier for sarcasm detection. Applied and Computational Engineering, 88(1), 201–206. https://doi.org/10.54254/2755-2721/88/20241727

Witro, D. (2024). State Islamic University Students’ Perceptions of IsraelAffiliated Products: A Study After the Fatwa of Indonesian Ulema Council No. 83 of 2023 Concerning the Law on Support for the Palestinian Struggle. Al-Manahaj: Jurnal Kajian Hukum Islam, 145–160.

Wulandari, N., & Saefudin. (2024). KAMPANYE GERAKAN BOIKOT PRODUK PENDUKUNG ISRAEL TERHADAP MCDONALD’S INDONESIA PADA AKUN TIKTOK @CALON_SURGA8. Argopuro: Jurnal Multidisiplin Ilmu Bahasa. https://doi.org/10.8734/argopuro.v1i2.365

Zhang, Xiaoxia. , X. Qi. , T. Z. (2024). Performance evaluation of Reddit Comments using Machine Learning and Natural Language Processing methods in Sentiment Analysis. https://doi.org/doi: 10.48550/arxiv.2405.16810

Downloads


Crossmark Updates

How to Cite

Sabrina, S. S. ., Shiddieq , D. F. ., & Roji, F. F. . (2025). Comparative Analysis of SVM and BERT for Sentiment and Sarcasm Detection in the Boycott of Israeli Products on Platform X. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(2), 872-883. https://doi.org/10.33395/sinkron.v9i2.14723