MLP Model Optimization for Heart Attack Risk Prediction: A Systematic Literature Review
DOI:
10.33395/sinkron.v9i3.15027Keywords:
Class Imbalance, Heart Disease Prediction, Multilayer Perceptron, SHAP, Systematic Literature ReviewAbstract
Heart disease remains a leading cause of global mortality, making the development of accurate predictive models a clinical priority. While Multilayer Perceptron (MLP) models offer significant potential, their application is hindered by challenges in optimization, data imbalance, and interpretability. This systematic literature review aims to address these issues by synthesizing current research on MLP model optimization for heart disease prediction, focusing on strategies for handling class imbalance and achieving model transparency with SHapley Additive exPlanations (SHAP). Following PRISMA guidelines, a structured search of major scientific databases resulted in the in-depth analysis of 30 peer-reviewed studies. The findings indicate that MLP optimization is increasingly sophisticated, employing automated hyperparameter tuning and novel architectures. For class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) is the predominant data-level solution, though a trend towards advanced algorithm-level techniques is emerging. The application of SHAP has successfully validated models by confirming the importance of known clinical risk factors like age and chest pain type, while also demonstrating potential for new discovery. This review concludes by providing a comprehensive roadmap for researchers, highlighting a critical need for comparative studies on imbalance techniques, deeper applications of explainable AI for local-level analysis, and a stronger focus on validation using large-scale, real-world clinical data to develop truly robust and trustworthy predictive systems.
Downloads
References
Ahmad, G. N., Ullah, S., Algethami, A., Fatima, H., & Akhter, S. Md. H. (2022). Comparative Study of Optimum Medical Diagnosis of Human Heart Disease Using Machine Learning Technique With and Without Sequential Feature Selection. IEEE Access, 10, 23808–23828. https://doi.org/10.1109/ACCESS.2022.3153047
Ahmed, M., & Husien, I. (2024). Heart Disease Prediction Using Hybrid Machine Learning: A Brief Review. Journal of Robotics and Control (JRC), 5(3), Article 3. https://doi.org/10.18196/jrc.v5i3.21606
Ahsan, M. M., & Siddique, Z. (2022). Machine learning-based heart disease diagnosis: A systematic literature review. Artificial Intelligence in Medicine, 128, 102289. https://doi.org/10.1016/j.artmed.2022.102289
Ali, M. M., Paul, B. K., Ahmed, K., Bui, F. M., Quinn, J. M. W., & Moni, M. A. (2021). Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison. Computers in Biology and Medicine, 136, 104672. https://doi.org/10.1016/j.compbiomed.2021.104672
Bhatt, C. M., Patel, P., Ghetia, T., & Mazzeo, P. L. (2023). Effective Heart Disease Prediction Using Machine Learning Techniques. Algorithms, 16(2), Article 2. https://doi.org/10.3390/a16020088
Bhowmik, P. K., Miah, M. N. I., Uddin, M. K., Sizan, M. M. H., Pant, L., Islam, M. R., & Gurung, N. (2024). Advancing Heart Disease Prediction through Machine Learning: Techniques and Insights for Improved Cardiovascular Health. British Journal of Nursing Studies, 4(2), Article 2. https://doi.org/10.32996/bjns.2024.4.2.5
Chandrasekhar, N., & Peddakrishna, S. (2023). Enhancing Heart Disease Prediction Accuracy through Machine Learning Techniques and Optimization. Processes, 11(4), Article 4. https://doi.org/10.3390/pr11041210
El-Hasnony, I. M., Elzeki, O. M., Alshehri, A., & Salem, H. (2022). Multi-Label Active Learning-Based Machine Learning Model for Heart Disease Prediction. Sensors, 22(3), Article 3. https://doi.org/10.3390/s22031184
Jindal, H., Agrawal, S., Khera, R., Jain, R., & Nagrath, P. (2021). Heart disease prediction using machine learning algorithms. IOP Conference Series: Materials Science and Engineering, 1022(1), 012072. https://doi.org/10.1088/1757-899X/1022/1/012072
Katarya, R., & Meena, S. K. (2021). Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis. Health and Technology, 11(1), 87–97. https://doi.org/10.1007/s12553-020-00505-7
Kavitha, M., Gnaneswar, G., Dinesh, R., Sai, Y. R., & Suraj, R. S. (2021). Heart Disease Prediction using Hybrid machine Learning Model. 2021 6th International Conference on Inventive Computation Technologies (ICICT), 1329–1333. https://doi.org/10.1109/ICICT50816.2021.9358597
Li, J., Liu, S., Hu, Y., Zhu, L., Mao, Y., & Liu, J. (2022). Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Journal of Medical Internet Research, 24(8), e38082. https://doi.org/10.2196/38082
Li, X., Zhao, Y., Zhang, D., Kuang, L., Huang, H., Chen, W., Fu, X., Wu, Y., Li, T., Zhang, J., Yuan, L., Hu, H., Liu, Y., Zhang, M., Hu, F., Sun, X., & Hu, D. (2023). Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018. Chemosphere, 311, 137039. https://doi.org/10.1016/j.chemosphere.2022.137039
Li, Y., He, Z., Wang, H., Li, B., Li, F., Gao, Y., & Ye, X. (2020). CraftNet: A deep learning ensemble to diagnose cardiovascular diseases. Biomedical Signal Processing and Control, 62, 102091. https://doi.org/10.1016/j.bspc.2020.102091
Lu, S., Chen, R., Wei, W., Belovsky, M., & Lu, X. (2022). Understanding Heart Failure Patients EHR Clinical Features via SHAP Interpretation of Tree-Based Machine Learning Model Predictions. AMIA Annual Symposium Proceedings, 2021, 813–822.
M. R., S., Devasthali, S., Mishra, S., Saha, S., Jain, N., & Manjunath, T. C. (2024, June 5). A Machine Learning-based Predictive Analytics System for Enhancing Cardiovascular Health using Heart-Sage Concepts. | EBSCOhost. https://openurl.ebsco.com/contentitem/gcd:181690671?sid=ebsco:plink:crawler&id=ebsco:gcd:181690671
Mehmood, A., Iqbal, M., Mehmood, Z., Irtaza, A., Nawaz, M., Nazir, T., & Masood, M. (2021). Prediction of Heart Disease Using Deep Convolutional Neural Networks. Arabian Journal for Science and Engineering, 46(4), 3409–3422. https://doi.org/10.1007/s13369-020-05105-1
Nandy, S., Adhikari, M., Balasubramanian, V., Menon, V. G., Li, X., & Zakarya, M. (2023). An intelligent heart disease prediction system based on swarm-artificial neural network. Neural Computing and Applications, 35(20), 14723–14737. https://doi.org/10.1007/s00521-021-06124-1
Nowfal, S. H., Sengan, S., G, J. S. D., Bhatta, S., V, S., & B, V. (2025). The Diagnosis of Heart Attacks: Ensemble Models of Data and Accurate Risk Factor Analysis Based on Machine Learning. Journal of Machine and Computing, 589–599. https://doi.org/10.53759/7669/jmc202505046
Ozcan, M., & Peker, S. (2023). A classification and regression tree algorithm for heart disease modeling and prediction. Healthcare Analytics, 3, 100130. https://doi.org/10.1016/j.health.2022.100130
Patro, S. P., Nayak, G. S., & Padhy, N. (2021). Heart disease prediction by using novel optimization algorithm: A supervised learning prospective. Informatics in Medicine Unlocked, 26, 100696. https://doi.org/10.1016/j.imu.2021.100696
Rajendran, R., & Karthi, A. (2022). Heart disease prediction using entropy based feature engineering and ensembling of machine learning classifiers. Expert Systems with Applications, 207, 117882. https://doi.org/10.1016/j.eswa.2022.117882
Rani, P., Kumar, R., Ahmed, N. M. O. S., & Jain, A. (2021). A decision support system for heart disease prediction based upon machine learning. Journal of Reliable Intelligent Environments, 7(3), 263–275. https://doi.org/10.1007/s40860-021-00133-6
Rath, A., Mishra, D., Panda, G., Satapathy, S. C., & Xia, K. (2022). Improved heart disease detection from ECG signal using deep learning based ensemble model. Sustainable Computing: Informatics and Systems, 35, 100732. https://doi.org/10.1016/j.suscom.2022.100732
Rojek, I., Kotlarz, P., Kozielski, M., Jagodziński, M., & Królikowski, Z. (2024). Development of AI-Based Prediction of Heart Attack Risk as an Element of Preventive Medicine. Electronics, 13(2), Article 2. https://doi.org/10.3390/electronics13020272
Saboor, A., Usman, M., Ali, S., Samad, A., Abrar, M. F., & Ullah, N. (2022). A Method for Improving Prediction of Human Heart Disease Using Machine Learning Algorithms. Mobile Information Systems, 2022(1), 1410169. https://doi.org/10.1155/2022/1410169
Somantri, O., & Wanti, L. P. (2024). A proposed model using Naïve Bayes and generalized linear models for early detection of heart attack risk. Indonesian Journal of Electrical Engineering and Computer Science, 33(2), Article 2. https://doi.org/10.11591/ijeecs.v33.i2.pp1169-1176
Subramani, S., Varshney, N., Anand, M. V., Soudagar, M. E. M., Al-keridis, L. A., Upadhyay, T. K., Alshammari, N., Saeed, M., Subramanian, K., Anbarasu, K., & Rohini, K. (2023). Cardiovascular diseases prediction by machine learning incorporation with deep learning. Frontiers in Medicine, 10. https://doi.org/10.3389/fmed.2023.1150933
Taher, H. A., & Abdulazeez, A. M. (2023). Machine Learning Approaches for Heart Disease Detection: A Comprehensive Review. International Journal of Research and Applied Technology (INJURATECH), 3(2), Article 2. https://doi.org/10.34010/injuratech.v3i2.12052
Wang, K., Tian, J., Zheng, C., Yang, H., Ren, J., Liu, Y., Han, Q., & Zhang, Y. (2021). Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Computers in Biology and Medicine, 137, 104813. https://doi.org/10.1016/j.compbiomed.2021.104813
Yazdani, A., Varathan, K. D., Chiam, Y. K., Malik, A. W., & Wan Ahmad, W. A. (2021). A novel approach for heart disease prediction using strength scores with significant predictors. BMC Medical Informatics and Decision Making, 21(1), 194. https://doi.org/10.1186/s12911-021-01527-5
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Heru Supriyanto, Taqwa Hariguna, Azhari Shouni Barkah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.