Creditworthiness Classification Utilizing AHP-SVM Based on 5C Criteria

Authors

  • Junita Amalia Information System, Faculty of Informatics and Electrical Engineering, Institut Teknologi Del, Indonesia
  • Agnes Judika Margaretha Manalu Information System, Faculty of Informatics and Electrical Engineering, Institut Teknologi Del, Indonesia
  • Jeremia Nico Pratama Ambarita Information System, Faculty of Informatics and Electrical Engineering, Institut Teknologi Del, Indonesia
  • Dwita Sihombing Information System, Faculty of Informatics and Electrical Engineering, Institut Teknologi Del, Indonesia

DOI:

10.33395/sinkron.v9i3.15049

Keywords:

Accuracy, Analytical Hierarchy Process, Credit Risk, Support Vector Machine, 5C of Credit

Abstract

Credit risk occurs when borrowers fail to meet loan repayment obligations, posing significant challenges to the financial stability of lending institutions. Accurate classification of creditworthiness is essential to mitigate such risks. This study proposes a hybrid approach that integrates the Analytical Hierarchy Process (AHP) and Support Vector Machine (SVM) to evaluate borrower eligibility based on the 5C model: Character, Capacity, Capital, Collateral, and Condition. The AHP method is used to assign weights to credit attributes based on expert judgment, while SVM performs the classification. Three experiments were conducted to compare the effectiveness of different feature selection strategies: (1) expert-defined 5C attributes, (2) AHP weighting conducted by experts, and (3) AHP weighting conducted by non-experts. Experimental results show that the 5C-SVM model achieved the highest performance with 96% accuracy, followed by AHP-SVM (expert) with 95% and AHP-SVM (non-expert) with 93%. The findings indicate that expert involvement in the feature selection process significantly improves model performance. This study demonstrates the effectiveness of combining domain knowledge with machine learning in building intelligent decision support systems for credit risk analysis. The proposed approach offers practical value for financial institutions seeking more objective, accurate, and consistent credit evaluation processes. Furthermore, it opens new opportunities for integrating expert-based reasoning with automated analytics in financial decision-making.

 

GS Cited Analysis

Downloads

Download data is not yet available.

References

Akbar, T. (2021). IMPLEMENTASI HAK CIPTA SEBAGAI JAMINAN PEMBERIAN KREDIT BANK DIKAITKAN DENGAN PRINSIP 5C (CHARACTER, CAPACITY, CAPITAL, COLLATERAL, CONDITION OF ECONOMY). Dharmasisya, 1(November). https://scholarhub.ui.ac.id/dharmasisya/vol1/iss3/28

Asana, I. M. D. P., & Yanti, N. P. D. T. (2023). Sistem Klasifikasi Pengajuan Kredit Dengan Metode Support Vector Machine (SVM). Jurnal Sistem Cerdas, 6(2), 123–133.

Azhar, Z., & Handayani, M. (2018). Analisis Faktor Prioritas Dalam Pemilihan Perumahan Kpr Menggunakan Metode Ahp. Jurnal Manajemen Informatika Dan Sistem Informasi, 1(2), 19. https://doi.org/10.36595/misi.v1i2.38

Feng, X., Xiao, Z., Zhong, B., Qiu, J., & Dong, Y. (2018). Dynamic ensemble classification for credit scoring using soft probability. Applied Soft Computing Journal, 65, 139–151. https://doi.org/10.1016/j.asoc.2018.01.021

Givari, M. R., Sulaeman, M. R., & Umaidah, Y. (2022). Perbandingan Algoritma SVM, Random Forest Dan XGBoost Untuk Penentuan Persetujuan Pengajuan Kredit. Nuansa Informatika, 16(1), 141–149. https://doi.org/10.25134/nuansa.v16i1.5406

Guntara, I. M. A., & Griadhi, N. M. A. Y. (2019). Penerapan Prinsip 5C Sebagai Upaya Perlindungan Terhadap Bank Dalam Menyalurkan Kredit. Kertha Semaya : Journal Ilmu Hukum, Vol 7 No 8, 1–15. https://ojs.unud.ac.id/index.php/kerthasemaya/article/view/52209/30894

Helwig, N. E., Hong, S., Hsiao-Wecksler, E. T., & Polk, J. D. (2011). Methods to temporally align gait cycle data. Journal of Biomechanics, 44(3), 561–566. https://doi.org/10.1016/j.jbiomech.2010.09.015

Keuangan, O. J. (2016). PENERAPAN MANAJEMEN RISIKO BAGI BANK UMUM SYARIAH DAN UNIT USAHA SYARIAH. In Peraturan Otoritas Jasa Keuangan.

Mauliana, P., Hunaifi, N., & Wahyudi, F. (2018). Sistem Pendukung Keputusan Penerimaan Debitur Menggunakan Metode Topsis (Studi Kasus: Swamitra Ksp Intranz). Infotronik : Jurnal Teknologi Informasi Dan Elektronika, 3(1), 15. https://doi.org/10.32897/infotronik.2018.3.1.84

Mendrofa, R. D., Siallagan, M. H., Amalia, J., & Pakpahan, D. P. (2023). Credit Risk Analysis With Extreme Gradient Boosting and Adaptive Boosting Algorithm. Journal of Information System,Graphics, Hospitality and Technology, 5(1), 1–7. https://doi.org/10.37823/insight.v5i1.233

Mursalim, M., & Mardainis, M. (2016). Penerapan Metode AHP Dan TOPSIS Untuk Mengevaluasi Pemohon Kredit Suku Cadang Motor Suzuki (Studi Kasus : PT. Riau Jaya Cemerlang Pekanbaru). Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 7(2), 115–128. https://doi.org/10.31849/digitalzone.v7i2.603

Pratiwi, K. N. C., & Santi, S. N. P. (2018). PENGARUH RISIKO BANK TERHADAP PROFITABILITAS BANK BPR DI KOTA DENPASAR. E-Jurnal Manajemen Unud, 7(7), 3886–3914. https://doi.org/https://doi.org/10.24843/EJMUNUD.2018.v7.i07.p16

Silvia Lestari, & Dian Mayasari. (2023). Analisa Penerapan Metode Naïve Bayes Dalam Memprediksi Kelayakan Calon Nasabah Dalam Melakukan Pinjaman. Jurnal Elektronika Dan Teknik Informatika Terapan ( JENTIK ), 1(2), 30–37. https://doi.org/10.59061/jentik.v1i2.351

Simamora, S. C. (2021). Counterparty Credit Limit: Identifikasi, Pengukuran dan Pemetaan Risiko Bank-Bank di Indonesia. Journal of Management and Business Review, 18(2), 110–123. https://doi.org/10.34149/jmbr.v18i2.274

Supriadi, A., Rustandi, A., Komarlina, D. H. L., & Ardiani, G. T. (2018). Analytical Hierarchy Process (AHP) (Vol. 1, Issue 7).

Tambunan, S. R., Amalia, J., Sitorus, K. M., Sibuea, Y. A. R., & Hutabarat, L. R. (2024). Enhancing Credit Risk Classification Using LightGBM with Deep Feature Synthesis. Journal of Information Systems and Informatics, 6(4), 2599–2610. https://doi.org/10.51519/journalisi.v6i4.902

Tian, Y., Bian, B., Tang, X., & Zhou, J. (2021). A new non-kernel quadratic surface approach for imbalanced data classification in online credit scoring. Information Sciences, 563, 150–165. https://doi.org/10.1016/j.ins.2021.02.026

Waluyo, A., Mukid, M. A., & Wuryandari, T. (2014). Perbandingan Klasifikasi Nasabah Kredit Menggunakan Regresi Logistik Biner Dan Cart (Classification and Regression Trees). Media Statistika, 7(2), 95–104. https://doi.org/10.14710/medstat.7.2.95-104

Widiharih, T., & Mukid, M. A. (2018). CREDIT SCORING MENGGUNAKAN METODE LOCAL MEANS BASED K HARMONIC NEAREST NEIGHBOR (MLMKHNN). Media Statistika, 11(2), 107–117. https://doi.org/10.14710/medstat.11.2.107-117

Zavadskas, E. K., Turskis, Z., & Kildiene, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165–179. https://doi.org/10.3846/20294913.2014.892037

Downloads


Crossmark Updates

How to Cite

Amalia, J., Manalu, A. J. M., Ambarita, J. N. P., & Sihombing, D. (2025). Creditworthiness Classification Utilizing AHP-SVM Based on 5C Criteria. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(3), 1788-1795. https://doi.org/10.33395/sinkron.v9i3.15049