Lightweight YOLO Models for Real-Time Multi-Vehicle Detection

Authors

  • Imam Ashari Universitas Harapan Bangsa
  • Iis Setiawan Mangku Negara Informatika, Universitas Harapan Bangsa, Indonesia
  • Arif Setia Sandi A Sistem Informasi, Universitas Harapan Bangsa, Indonesia

DOI:

10.33395/sinkron.v9i3.15071

Keywords:

YOLO object detection, vehicle detection, traffic surveillance, data augmentation, real-time detection

Abstract

This study presents a comparative evaluation of three lightweight YOLO architectures: YOLOv5n, YOLOv8n, and YOLOv11n, for multi-class vehicle detection using CCTV imagery captured under dense traffic conditions in Semarang, Indonesia. The models were tested on their ability to detect four types of vehicles, including motorcycle, car, bus, and truck. To enhance generalization across different lighting conditions, image qualities, and environmental noise, six data augmentation techniques were applied during training. These included Blur, Brightness Adjustment, Color Jitter, Noise Injection, Scaling, and Zoom In. Among these, the Blur technique yielded the most significant improvement in detection accuracy. YOLOv8n with Blur augmentation achieved the best performance with a precision of 0.875, recall of 0.655, mAP@0.5 of 0.756, and mAP@0.5:0.95 of 0.467. Class-wise analysis showed that buses and trucks were easier to detect due to their larger size and distinct features, while motorcycles were the most difficult due to their smaller dimensions and visual similarity to other objects. Training curves demonstrated consistent decreases in loss values and progressive improvements in evaluation metrics across 60 epochs. These findings emphasize the importance of selecting appropriate model architecture and augmentation strategies to improve object detection performance, particularly in real-time and resource-limited applications. YOLOv8n with Blur augmentation proved to be the most effective configuration in this study.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alam, M. J., Hasan, M. Z., Rahman, M. M., Rahman, M. A., Sarker, N. H., Azad, S., Islam, T. N., Paul, B., Anjum, T., Halder, B., & Fattah, S. A. (2025). An Optimized YOLOv5 Based Approach For Real-time Vehicle Detection At Road Intersections Using Fisheye Cameras. http://arxiv.org/abs/2502.04566

Algiriyage, N., Doyle, E. E. H., Johnston, D., Prasanna, R., Stock, K., Punchihewa, M., & Jayawardhana, S. (2021). Towards real-time traffic flow estimation using YOLO and SORT from surveillance video footage. Proceedings of the International ISCRAM Conference, 2021-May(May 2021), 40–48.

Ali, M. L., & Zhang, Z. (2024). The YOLO Framework: A Comprehensive Review of Evolution, Applications, and Benchmarks in Object Detection. Computers, 13(12). https://doi.org/10.3390/computers13120336

Alif, M. A. R. (2024). YOLOv11 for Vehicle Detection: Advancements, Performance, and Applications in Intelligent Transportation Systems. http://arxiv.org/abs/2410.22898

Almukhalfi, H., Noor, A., & Noor, T. H. (2024). Traffic management approaches using machine learning and deep learning techniques: A survey. Engineering Applications of Artificial Intelligence, 133(PB), 108147. https://doi.org/10.1016/j.engappai.2024.108147

Ansh Sakhuja. (2023). Intelligent Traffic Management System using Computer Vision and Machine Learning. Innovative Research Thoughts, 9(5), 1–10. https://doi.org/10.36676/irt.2023-v9i5-001

Raimondo, D., Raffone, A., Salucci, P., Raimondo, I., Capobianco, G., Galatolo, F. A., ... & Seracchioli, R. (2024). Detection and classification of hysteroscopic images using deep learning. Cancers, 16(7), 1315.

Awaluddin, B., & Chao, C. (2023). Investigating Effective Geometric Transformation for Image Augmentation to Improve Static Hand Gestures with a Pre-Trained Convolutional Neural Network.

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. http://arxiv.org/abs/2004.10934

Elbasha, A. M., & M. Abdellatif, M. (2025). AIoT-Based Smart Traffic Management System. 69–77. https://doi.org/10.5121/csit.2024.150204

Eldeen, N., Mohamed, K., & Seyedali, L. (2022). A comprehensive survey of recent trends in deep learning for digital images augmentation. Artificial Intelligence Review, 55(3), 2351–2377. https://doi.org/10.1007/s10462-021-10066-4

Fedorov, A., Nikolskaia, K., Ivanov, S., Shepelev, V., & Minbaleev, A. (2019). Traffic flow estimation with data from a video surveillance camera. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0234-z

Firdaus, M., & Arief, M. R. (2023). Impact of Data Augmentation Techniques on the Implementation of a Combination Model of Convolutional Neural Network (CNN) and Multilayer Perceptron (MLP) for the Detection of Diseases in Rice Plants. Journal of Scientific Research, Education, and Technology (JSRET), 2(2), 453-465.

Flores-Calero, M., Astudillo, C. A., Guevara, D., Maza, J., Lita, B. S., Defaz, B., Ante, J. S., Zabala-Blanco, D., & Armingol Moreno, J. M. (2024). Traffic Sign Detection and Recognition Using YOLO Object Detection Algorithm: A Systematic Review. Mathematics, 12(2), 1–31. https://doi.org/10.3390/math12020297

Geetha, A. S. (2024). Comparing YOLOv5 Variants for Vehicle Detection: A Performance Analysis. 1–18. http://arxiv.org/abs/2408.12550

Guo, Y., Zhang, Q., Lai, K. K., Zhang, Y., Wang, S., & Zhang, W. (2020). The impact of urban transportation infrastructure on air quality. Sustainability (Switzerland), 12(14), 1–23. https://doi.org/10.3390/su12145626

Gupta, M., Miglani, H., Deo, P., & Barhatte, A. (2023). Real-time traffic control and monitoring. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 5(March), 100211. https://doi.org/10.1016/j.prime.2023.100211

Hong, X., Huang, J., Zhao, W., Zou, H., Lin, Z., & Chen, Y. (2024). Object detection for traffic management based on YOLO. 13018(Stce 2023), 97. https://doi.org/10.1117/12.3024069

Hussain, M. (2024). YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision. 1–12. http://arxiv.org/abs/2407.02988

Jegham, N., Koh, C. Y., Abdelatti, M., & Hendawi, A. (2025). YOLO Evolution: A Comprehensive Benchmark and Architectural Review of YOLOv12, YOLO11, and Their Previous Versions. http://arxiv.org/abs/2411.00201

Karim, A., Raza, M. A., Alharthi, Y. Z., Abbas, G., Othmen, S., Hossain, M. S., Nahar, A., & Mercorelli, P. (2024). Visual Detection of Traffic Incident through Automatic Monitoring of Vehicle Activities. World Electric Vehicle Journal, 15(9), 382. https://doi.org/10.3390/wevj15090382

Khan, A. H., Umer, R. M., Dunnhofer, M., Micheloni, C., & Martinel, N. (2023). LBKENet:Lightweight Blur Kernel Estimation Network for Blind Image Super-Resolution. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14234 LNCS, 209–222. https://doi.org/10.1007/978-3-031-43153-1_18

Khanam, R., Asghar, T., & Hussain, M. (2025). Comparative Performance Evaluation of YOLOv5, YOLOv8, and YOLOv11 for Solar Panel Defect Detection. Solar, 5(1), 1–25. https://doi.org/10.3390/solar5010006

Lin, X., & Zhu, Z. (2024). Vehicle detection in complex scenarios based on YOLOv5. Applied and Computational Engineering, 52(1), 157–163. https://doi.org/10.54254/2755-2721/52/20241500

MANDAL, V. (2019). Artificial Intelligence Enabled Automatic Traffic Monitoring System. Duke Law Journal, 1(1), 1–13. https://doi.org/10.20944/preprints202009.0725.v1

Pei, M., Liu, N., Zhao, B., & Sun, H. (2023). Self-Supervised Learning for Industrial Image Anomaly Detection by Simulating Anomalous Samples. International Journal of Computational Intelligence Systems, 16(1). https://doi.org/10.1007/s44196-023-00328-0

Rahman, R., Bin Azad, Z., & Bakhtiar Hasan, M. (2022). Densely-Populated Traffic Detection Using YOLOv5 and Non-maximum Suppression Ensembling. Lecture Notes on Data Engineering and Communications Technologies, 95, 567–578. https://doi.org/10.1007/978-981-16-6636-0_43

Rana, M. M., Hossain, M. S., Hossain, M. M., & Haque, M. D. (2024). Improved vehicle detection: unveiling the potential of modified YOLOv5. Discover Applied Sciences, 6(7). https://doi.org/10.1007/s42452-024-06029-3

Reche, C., Tobias, A., & Viana, M. (2022). Vehicular Traffic in Urban Areas: Health Burden and Influence of Sustainable Urban Planning and Mobility. Atmosphere, 13(4), 1–21. https://doi.org/10.3390/atmos13040598

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 779–788. https://doi.org/10.1109/CVPR.2016.91

Tchanchou, C., Jiang, X., Wang, Y., & Zheng, R. (2022). YOLO Based Multi-Objective Vehicle Detection and Tracking. Research Square, 0–20. https://doi.org/10.21203/rs.3.rs-2006332/v1

Wang, C.-Y., & Liao, H.-Y. M. (2024). YOLOv1 to YOLOv10: The Fastest and Most Accurate Real-time Object Detection Systems. APSIPA Transactions on Signal and Information Processing, 13(1), 1–13. https://doi.org/10.1561/116.20240058

Wang, C., Bochkovskiy, A., Liao, H. M., Informasi, I., & Sinica, A. (n.d.). Institut Ilmu Informasi, Academia Sinica, Taiwan. 1–15.

Wang, Y., Xu, S., Wang, P., Li, K., Song, Z., Zheng, Q., Li, Y., & He, Q. (2024). Lightweight Vehicle Detection Based on Improved YOLOv5s. Sensors, 24(4). https://doi.org/10.3390/s24041182

Zhang, Y., Guo, Z., Wu, J., Tian, Y., Tang, H., & Guo, X. (2022). Real-Time Vehicle Detection Based on Improved YOLO v5. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912274

Downloads


Crossmark Updates

How to Cite

Ashari, I., Negara, I. S. M. ., & A, A. S. S. . (2025). Lightweight YOLO Models for Real-Time Multi-Vehicle Detection. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(3), 1795-1810. https://doi.org/10.33395/sinkron.v9i3.15071