Customer Loyalty Classification Using KNN and Decision Tree for Sales Strategy Development

Authors

  • Mukhlisin Magister Teknik Informatika, IIB Darmajaya Lampung
  • Handoyo Widi Nugroho Magister Teknik Informatika, IIB Darmajaya Lampung

DOI:

10.33395/sinkron.v9i3.15110

Keywords:

Keywords: Customer Loyalty; Classification; Decision Tree; K-Nearest Neighbor; Python; Data Mining

Abstract

Customer loyalty is a crucial element in maintaining business continuity in today’s competitive digital era. This study aims to classify customer loyalty levels based on sales and transaction behavior data using two supervised machine learning algorithms: K-Nearest Neighbor (KNN) and Decision Tree. The models were developed and evaluated using Python in the Google Colaboratory environment, utilizing a dataset of 250 customer records. The research process included data preprocessing, feature selection, normalization, data splitting, model building, and evaluation using accuracy, precision, recall, and F1-score metrics. Evaluation results showed that the Decision Tree algorithm delivered the best performance with 99.20% accuracy, 99.50% precision, 99.50% recall, and a 99.50% F1-score. Meanwhile, the KNN algorithm achieved 91.60% accuracy, 91.63% precision, 98.50% recall, and a 94.91% F1-score. These findings indicate that the Decision Tree model is more effective for classifying customer loyalty and can be implemented as a decision support tool for data-driven Customer Relationship Management (CRM) strategies.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ardani, R. A. T., Jupriyadi, Styawati, Saputra, A. W., & Basroni, A. (2022). Implementasi Data Mining Menggunakan Algoritma Apriori untuk Memprediksi Merk Parfum yang Terjual (Studi Kasus: Queen Parfum). Jurnal Ilmiah Infrastruktur Teknologi Informasi (JIITI), 3(1), 9–15. http://jim.teknokrat.ac.id/index.php/teknologiinformasi/article/view/2324%0Ahttp://jim.teknokrat.ac.id/index.php/teknologiinformasi/article/download/2324/769

Artana, I. P. Y., Dwi, I. M., Asana, P., Nyoman, N., Sastaparamitha, A. J., & Jaya, K. (2025). Combining U-NET Segmentation and Dimensionality Reduction Methods for K-NN Fish Freshness Classification. 8(1), 81–94.

Bounie, D. (2025). Pengaruh Ulasan Pelanggan Online terhadap Keputusan Pembelian : Kasus Pengaruh Ulasan Pelanggan Online terhadap Pembelian Keputusan : Kasus Video Game. 1.

Fihir, M., Martanto, & Hayati, U. (2010). Menggunakan Metode Decision Tree Pada. (Jurnal Mahasiswa Teknik Informatika, 7(6), 3830–3833.

Gunia, E., Irma Purnamasari, A., & Ali, I. (2024). Penerapan Datamining Dalam Menentukan Pola Penjualan Produk Menggunakan Algoritma Fp-Growth. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 2417–2422. https://doi.org/10.36040/jati.v8i2.9506

Isyriyah, L., Baihaqi, I., & Purwiantono, F. E. (2024). Prediksi Loyalitas Pelanggan Pada Fast Moving Consumer Goods Menggunakan Klasifikasi Metode C4.5. Smatika Jurnal, 13(02), 369–380. https://doi.org/10.32664/smatika.v13i02.1115

Naldy, E. T., & Andri, A. (2021). Penerapan Data Mining Untuk Analisis Daftar Pembelian Konsumen Dengan Menggunakan Algoritma Apriori Pada Transaksi Penjualan Toko Bangunan MDN. Jurnal Nasional Ilmu Komputer, 2(2), 89–101. https://doi.org/10.47747/jurnalnik.v2i2.525

Nosiel, N., Sriyanto, S., & Maylani, F. (2021). Perbandingan Teknik Data Mining Untuk Prediksi Penjualan Pada UMKM Gerabah. Prosiding Seminar Nasional Darmajaya, 1, 72–86.

NOVIA RAHMADANA1, ABDUL RAHIM*2, F. Y. (2024). Analisis Kepuasan Pelanggan Menggunakan Algoritma K-Nearest Neighbors Pada. 9, 183–192.

Nugroho, R., Setiawan, I., Akmal, R. N., & Azka, N. (2024). Evaluasi Keamanan Sistem Informasi Pada SMKN 1 Banyumas Berdasarkan Indeks Keamanan Informasi ( KAMI ) ISO 27001 : 2013. 6.

Nurzahputra, A., Ratna Safitri, A., & Aziz Muslim, M. (2016). Klasifikasi Pelanggan pada Customer Churn Prediction Menggunakan Decision Tree. PRISMA : Prosiding Seminar Nasional Matematika, 717–722. https://journal.unnes.ac.id/sju/prisma/article/view/21528

Sreevalsan-Nair, J. (2020). K-nearest Neighbors. Encyclopedia of Earth Sciences Series, 2020(2), 100–103. https://doi.org/10.1007/978-3-030-26050-7_170-1

Takalapeta, S. (2018). Penerapan Data Mining Untuk Menganalisis Kepuasan Konsumen Menggunakan Metode Algoritma C4.5. J I M P - Jurnal Informatika Merdeka Pasuruan, 3(3), 34–38. https://doi.org/10.37438/jimp.v3i3.186

Tritularsih, Y., & Prasetyo, H. (2025). Penerapan Machine Learning untuk Pencarian Pelanggan Loyal Berpotensi Menggunakan Metode Python Pandas Seaborn. Integrasi: Jurnal Ilmiah Teknik Industri, 10(1), 12–24. https://doi.org/10.32502/integrasi.v10i1.292

Utomo, D. N. S. S., Bhakti, H. D., & Devi, P. A. R. (2025). Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penilaian Kinerja Pegawai Di Kedai Xyz. Kohesi: Jurnal Multidisiplin Saintek, 7(1), 61–70. https://ejournal.warunayama.org/index.php/kohesi/article/view/11029

Wahyudi, T., Informasi, S., Tinggi, S., Komputer, I., Karya, C., Sawit, D., & Timur, K. J. (2022). Penerapan Data Mining Pada Transaksi Penjualan Pakaian Dengan Menggunakan Algoritma Apriori. Jupiter, 14(2), 473–482.

Wijaya, A., & Girsang, A. S. (2015). Use of Data Mining for Prediction of Customer Loyalty. CommIT (Communication and Information Technology) Journal, 10(1), 41. https://doi.org/10.21512/commit.v10i1.1660

Downloads


Crossmark Updates

How to Cite

Mukhlisin, M., & Nugroho, H. W. . (2025). Customer Loyalty Classification Using KNN and Decision Tree for Sales Strategy Development. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(3), 1159-1166. https://doi.org/10.33395/sinkron.v9i3.15110