Association Rule Mining across Multiple Domains: Systematic Literature Review
DOI:
10.33395/sinkron.v9i4.15227Keywords:
Association Rule Mining, Apriori, FP-Growth, ECLAT, Data Mining, Multi-domain Applications, Systematic Literature ReviewAbstract
This Systematic Literature Review (SLR) synthesizes 50 studies published between 2020 and 2025 that applied Association Rule Mining (ARM) across multiple domains, using the PRISMA 2020 framework. The review examines application areas, algorithm choices, implementation tools, parameter settings, and emerging trends. Results indicate that transportation and market analysis are the most prominent domains, followed by healthcare, manufacturing, and governance, with smaller contributions from tourism, agriculture, energy, and the environment. Apriori remains the most widely used algorithm due to its simplicity, FP-Growth is preferred for efficiency, and hybrid or modified approaches are adopted to address scalability issues. Python dominates as the primary implementation tool, alongside RapidMiner and R-Studio, with parameter thresholds generally adapted to dataset size and domain-specific needs. The novelty of this review lies in providing a cross-domain synthesis of ARM, filling the gap left by prior reviews that were limited to specific fields or algorithms. This broader perspective reveals temporal trends and recurring challenges, particularly scalability and interpretability, while identifying opportunities such as integration with deep learning, real-time ARM, and cross-domain adaptation. By offering a structured overview of developments in ARM, this study contributes both conceptual insights and practical guidance, serving as a reference for optimizing applications and informing future research directions.
Downloads
References
Adlin Revaldi, A., Novriyenni, & Kadim, L. A. N. (2023). Occupational Correlation to the Level of Community Welfare Using The Apriori Algorithm (Case Study: Mangga Village). Journal of Artificial Intelligence and Engineering Applications (JAIEA), 3(1), 44–52. https://doi.org/10.59934/jaiea.v3i1.257
Almira, A., Suendri, & Ikhwan, A. (2021). Implementasi Data Mining Menggunakan Algoritma Fp-Growth pada Analisis Pola Pencurian Daya Listrik. Jurnal Informatika Universitas Pamulang, 6, 442–448.
Assiroj, P., Meyliana, Hidayanto, A. N., Prabowo, H., & Warnars, H. L. H. S. (2018). Hoax News Detection on Social Media: A Survey. 2018 Indonesian Association for Pattern Recognition International Conference (INAPR), 186–191. https://doi.org/10.1109/INAPR.2018.8627053
Awad, N. A., & Mahmoud, A. (2021). Analyzing customer reviews on social media via applying association rule. Computers, Materials and Continua, 68(2), 1519–1530. https://doi.org/10.32604/cmc.2021.016974
Bahaweres, R. B., & Nugrahanti, D. A. (2022). Implementation of Text Association Rules about Terrorism on Twitter in Indonesia. 2022 10th International Conference on Cyber and IT Service Management (CITSM), 1–6. https://doi.org/10.1109/CITSM56380.2022.9935864
Bunsaman, N., Sae-Ueng, P., & Chochiang, K. (2021). Analysis of the relationship of tourist behavior in Andaman Coast Provinces, Southern Thailand. 2021 25th International Computer Science and Engineering Conference (ICSEC), 57–62. https://doi.org/10.1109/ICSEC53205.2021.9684582
Cai, Q. (2020). Cause Analysis of Traffic Accidents on Urban Roads Based on an Improved Association Rule Mining Algorithm. IEEE Access, 8, 75607–75615. https://doi.org/10.1109/ACCESS.2020.2988288
Chen, L., Huang, S., Yang, C., & Chen, Q. (2020). Analyzing Factors that Influence Expressway Traffic Crashes Based on Association Rules: Using the Shaoyang–Xinhuang Section of the Shanghai–Kunming Expressway as an Example. Journal of Transportation Engineering, Part A: Systems, 146(9). https://doi.org/10.1061/JTEPBS.0000425
Chopvitayakun, S., Jitsakul, W., & Aukkanit, N. (2024). Analyzing Purchase Behavior Using FP Growth Technique to Find Association Rules. ACM International Conference Proceeding Series, 106–111. https://doi.org/10.1145/3678610.3678618
Chung, W.-H., Kao, S.-L., Chang, C.-M., & Yuan, C.-C. (2020). Association rule learning to improve deficiency inspection in port state control. Maritime Policy & Management, 47(3), 332–351. https://doi.org/10.1080/03088839.2019.1688877
Diallo, A., Camara, F., Camara, G., & Sarr, M. (2024). Association Rule Mining-based Analysis of Clinical Manifestations of SARS-Cov-2 (COVID-19) Coronavirus Infection in Senegal. 54–59. https://doi.org/10.1145/3715931.3715940
Du, J., He, Z., Lu, X., & Si, K. (2024). Research on Academic Warning Model of College Student Study based on Apriori Association Rule. 2024 5th International Conference on Information Science and Education (ICISE-IE), 243–248. https://doi.org/10.1109/ICISE-IE64355.2024.11025416
Elfira Iriani, I Gusti Prahmana, & Yani Maulita. (2024). Korelasi Antara Karakteristik TKI dengan Jenis Pekerjaan Menggunakan Metode Apriori. Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 2(4), 85–100. https://doi.org/10.62951/bridge.v2i4.218
Fang, Y., Wang, R., Guo, M., & Hou, Y. (2022). Product bundling for online supermarkets by frequent itemset mining and optimization approach. Procedia Computer Science, 207, 4434–4441. https://doi.org/10.1016/j.procs.2022.09.507
Gobov, D., & Sokolovskiy, N. (2023). Association Rule Mining for Requirement Elicitation Techniques in IT Projects. 983–987. https://doi.org/10.15439/2023F4831
Guo, H., Mo, Y., Guo, F., Kang, R., Tang, K., & Ma, Q. (2025). Association analysis of causative factors of fall from height accidents. Journal of Safety Science and Resilience, 100221. https://doi.org/10.1016/j.jnlssr.2025.100221
Hasan, A. Al, Bari, Q. H., Lorber, P., Rafizul, I. M., Saju, J. A., & Kraft, E. (2024). An Association Rule Mining approach to explore the dynamics in plastic recycling business. Cleaner Waste Systems, 9. https://doi.org/10.1016/j.clwas.2024.100186
Hassan, Md. M., Karim, A., Mollick, S., Azam, S., Ignatious, E., & Haque, A. S. M. F. Al. (2023). An Apriori Algorithm-Based Association Rule Analysis to detect Human Suicidal Behaviour. Procedia Computer Science, 219, 1279–1288. https://doi.org/10.1016/j.procs.2023.01.412
Hu, Y., Xu, W., Yuan, R., & Chen, W. (2023). Apriori algorithm-based analysis of causal factors of ground-floor economic catering accidents. Proceedings of the 2023 4th International Conference on Big Data Economy and Information Management, 129–135. https://doi.org/10.1145/3659211.3659234
Huang, D., Liang, T., Hu, S., Loughney, S., & Wang, J. (2023). Characteristics analysis of intercontinental sea accidents using weighted association rule mining: Evidence from the Mediterranean Sea and Black Sea. Ocean Engineering, 287, 115839. https://doi.org/10.1016/j.oceaneng.2023.115839
Jaradat, S., Alhadidi, T. I., Ashqar, H. I., Hossain, A., & Elhenawy, M. (2025). Investigating patterns of freeway crashes in Jordan: Findings from a text mining approach. Results in Engineering, 26. https://doi.org/10.1016/j.rineng.2025.104413
Jiang, Q. (2021). Analysis of Rural Tourism Demand Characteristics and Experience Differences Based on Association Rule Mining. Wireless Communications and Mobile Computing, 2021(1). https://doi.org/10.1155/2021/8742950
Kim, C., Yeom, J., Jeong, S., & Chung, J.-B. (2023). Resilience and social change: Findings from research trends using association rule mining. Heliyon, 9(8), e18766. https://doi.org/10.1016/j.heliyon.2023.e18766
Kiraz, A., & Hüseyin, E. (2020). DATA MINING APPLICATIONS: THE SAMPLE OF SAKARYA UNIVERSITY LIBRARY AND DOCUMENTATION DEPARTMENT . TOJET: The Turkish Online Journal of Educational Technology, Special issue IETC, ITEC, IWSC & INTE.
Kovalchuk, O., Banakh, S., Masonkova, M., Kolesnikov, A., Chopyk, P., & Basistyi, P. (2024). Association Rules Mining in Crime Data Analysis. 2024 14th International Conference on Advanced Computer Information Technologies (ACIT), 144–149. https://doi.org/10.1109/ACIT62333.2024.10712467
Kristiana, T., Putri, S. A., Nurmalasari, Handayani, R. I., Merlina, N., & Yunita, N. (2020). Association Rule Implementation Using Algorithm Apriori To Analize Fishing Pattern In Indonesia. Journal of Physics: Conference Series, 1641(1), 012072. https://doi.org/10.1088/1742-6596/1641/1/012072
Lawal, O., Ogugbue, C. J., & Imam, T. S. (2023). Mining association rules between lichens and air quality to support urban air quality monitoring in Nigeria. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2023.e13073
Li, Z., Li, X., Tang, R., & Zhang, L. (2021). Apriori Algorithm for the Data Mining of Global Cyberspace Security Issues for Human Participatory Based on Association Rules. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.582480
Lu, P.-H., Keng, J.-L., Tsai, F.-M., Lu, P.-H., & Kuo, C.-Y. (2021). An Apriori Algorithm-Based Association Rule Analysis to Identify Acupoint Combinations for Treating Diabetic Gastroparesis. Evidence-Based Complementary and Alternative Medicine, 2021, 1–9. https://doi.org/10.1155/2021/6649331
Machfudiyanto, R. A., Chen, J.-H., Latief, Y., Rachmawati, T. S. N., Arifai, A. M., & Firmansyah, N. (2023). Applying Association Rule Mining to Explore Unsafe Behaviors in the Indonesian Construction Industry. Sustainability, 15(6), 5261. https://doi.org/10.3390/su15065261
Maneiro, R., Amatria, M., Losada, J. L., Jonsson, G. K., Ardá, A., & Iván-Baragaño, I. (2025). Application of association rules to ball possessions in professional men’s football. Frontiers in Psychology, 16. https://doi.org/10.3389/fpsyg.2025.1527437
Masdiyasa, I. G. S., Prabowo, A., Mandyartha, E. P., Ariefwan, R. M., Sugiarto, & Idhom, M. (2022). Analysis of Agricultural Product Package Recommendations Using the FP-Growth Algorithm. 2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-Based Interconnected Digital Worlds (NISS), 1–8. https://doi.org/10.1109/NISS55057.2022.10085146
Montella, A., de Oña, R., Mauriello, F., Rella Riccardi, M., & Silvestro, G. (2020). A data mining approach to investigate patterns of powered two-wheeler crashes in Spain. Accident Analysis & Prevention, 134, 105251. https://doi.org/10.1016/j.aap.2019.07.027
Musa, A., Musa, R. M., Fen, B. W., & Cheah, K. S. L. (2025). Predicting Determinants of Mental Health Status in Malaysian Undergraduate Students Using the Association Rule Mining Technique. The Open Psychology Journal, 18(1). https://doi.org/10.2174/0118743501369103250414080227
Peng, F., Sun, Y., Chen, Z., & Gao, J. (2023). An Improved Apriori Algorithm for Association Rule Mining in Employability Analysis. Tehnicki Vjesnik, 30(5), 1435–1442. https://doi.org/10.17559/TV-20230327000481
Primanda, E., & Oktora, S. I. (2024). Analisis Ketertinggalan Desa di Provinsi Papua dan Papua Barat Menggunakan Association Rule Mining. Statistika, 24(1), 102–114. https://doi.org/10.29313/statistika.v24i1.2302
Recommender System, ; S, Babalhavaeji, F., Jalali, M., Hariri, N., & Khademi, M. (2024). Application of Data Mining in the Recommender System of Digital Libraries Based on Association Rules (Case Study. Astan Quds Razavi Digital Library). Librarianship and Information Organization Studies, 35(2), 39–66. https://doi.org/10.30484/NASTINFO.2024.3496.2246
Riyadh Alboalebrah, M., & Al-augby, S. (2025). Unveiling the Causes of Fatal Road Accidents in Iraq: An Association Rule Mining Approach Using the Apriori Algorithm. Journal of Cyber Security and Risk Auditing, 2025(2), 1–11. https://doi.org/10.63180/jcsra.thestap.2025.2.1
Schoch, A., Refflinghaus, R., Schmitzberger, N., & Wolters, A. (2024). Association Rule Mining for Dynamic Error Classification in the Automotive Manufacturing Industry. Procedia CIRP, 126, 1041–1046. https://doi.org/10.1016/j.procir.2024.08.400
Septianto, Y., & Musodo, K. A. (2024). Data Tracer Study Analysis in Higher Education Using The FP-Growth Algorithm. Eduvest - Journal of Universal Studies, 4(12), 11966–11979. https://doi.org/10.59188/eduvest.v4i12.50106
Setiawan, A., Kurniawan, V., & Novita, R. (2024). Penerapan Algoritma Eclat Untuk Mencari Pola Hubungan Antar Barang Pada Data transaksi Penjualan. Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), 4(1), 9–16. https://doi.org/10.57152/ijirse.v4i1.1348
Shastri, L. B. (2020). Applying Association Rule Mining to analyze the performance of Indian Cricket Team in T20 format Geetanjali Sahi. 2020(1). www.howstat.com
Sivasankaran, S. K., Natarajan, P., & Balasubramanian, V. (2020). Identifying Patterns of Pedestrian Crashes in Urban Metropolitan Roads in India using Association Rule Mining. Transportation Research Procedia, 48, 3496–3507. https://doi.org/10.1016/j.trpro.2020.08.102
Sohrabi, C., Franchi, T., Mathew, G., Kerwan, A., Nicola, M., Griffin, M., Agha, M., & Agha, R. (2021). PRISMA 2020 statement: What’s new and the importance of reporting guidelines. International Journal of Surgery, 88, 105918. https://doi.org/10.1016/j.ijsu.2021.105918
Tamakloe, R., & Adanu, E. K. (2024). Critical patterns associated with vehicle-pedestrian hit-and-run casualty injury severity under different weather conditions: An association rule mining approach. IATSS Research, 48(3), 299–318. https://doi.org/10.1016/j.iatssr.2024.06.003
Triayudi, A. (2022). Penerapan Algoritma Apriori Data Mining Untuk Menentukan Penyusunan Layout Barang Pada Toko Ritel. Building of Informatics, Technology and Science (BITS), 4(2). https://doi.org/10.47065/bits.v4i2.2303
Wang, L., Guo, Y., Guo, Y., Xia, X., Zhang, Z., & Cao, J. (2023). An Improved Eclat Algorithm based Association Rules Mining Method for Failure Status Information and Remanufacturing Machining Schemes of Retired Products. Procedia CIRP, 118, 572–577. https://doi.org/10.1016/j.procir.2023.06.098
Wang, Y. (2024). Association Mining Techniques for Enterprise Digital Development Data Based on Apriori Algorithm. 2024 International Conference on Big Data and Digital Management, 263–268. https://doi.org/10.1145/3696500.3696545
Widodo, W., Riswanto, E., Suparyanto, & Sulistianto, H. D. (2025). Implementation of Association Rule Method for Promotion Strategy Using the Apriori Algorithm: Case Study: Snada Accessories Store. 2025 4th International Conference on Electronics Representation and Algorithm (ICERA), 563–568. https://doi.org/10.1109/ICERA66156.2025.11087287
Yan, J., Miao, C., Su, F., & Zhao, Y. (2024). Association mining of coastline change and land use patterns to enhance conservation. Ecological Informatics, 80. https://doi.org/10.1016/j.ecoinf.2024.102544
Yang, Y., Tian, N., Wang, Y., & Yuan, Z. (2022). A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data. https://doi.org/10.21203/rs.3.rs-1311180/v1
Ziakopoulos, A., Michelaraki, E., Nikolaou, D., Folla, K., & Yannis, G. (2023). Association Rule Mining for Island and Mainland Road Crash Injuries in Greece. Transportation Research Procedia, 72, 163–170. https://doi.org/10.1016/j.trpro.2023.11.390
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Dayini Syahirah, Priati, Okky Pratama Martadireja

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.