Blockchain Model for Tracking Plastic Waste Using Smart Contracts to Reduce Emissions
DOI:
10.33395/sinkron.v9i4.15245Keywords:
Blockchain, Carbon Emissions, Plastic Waste, Recycling, Smart ContractsAbstract
This research focuses on the design and development of a blockchain-based plastic waste tracking system aimed at enhancing transparency, efficiency, and accountability in plastic waste management. The system utilizes Hyperledger Fabric as a permissioned blockchain platform and integrates smart contracts to manage transactions between organizations, including waste generators, collectors, sorting warehouses, and final processing warehouses. This system records each stage of the plastic waste journey, from creation to final processing, in a permanent, transparent, and immutable manner. The testing results demonstrate that the system can accurately record the status and history of waste, manage transfers between organizations, and process plastic waste into recycled products. Moreover, the system shows a significant potential for carbon emission reduction, with an estimated reduction of up to 50% compared to traditional plastic waste management methods, such as incineration or landfilling. The study also explores how the implementation of blockchain can support global efforts in mitigating the environmental impacts of plastic waste. The blockchain-based system also provides real-time monitoring, ensuring that each transaction is verified and recorded immediately, contributing to more effective management. The implementation of smart contracts further guarantees that waste-related activities are executed automatically when predefined conditions are met, reducing administrative overhead. The study also explores how the implementation of blockchain can support global efforts in mitigating the environmental impacts of plastic waste. Ultimately, this system presents a scalable solution that could be adopted in various regions to improve global waste management strategies.
Downloads
References
Ahmad, R., Salah, K., Jayaraman, R., Yaqoob, I., & Omar, M. (2021). Blockchain for Waste Management in Smart Cities: A Survey. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2021.3113380
Alsabri, A., Tahir, F., & Al-Ghamdi, S. G. (2022). Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Materials Today: Proceedings, 56, 2245–2251. https://doi.org/https://doi.org/10.1016/j.matpr.2021.11.574
An, J., Wu, F., Wang, D., & You, J. (2022). Estimated material metabolism and life cycle greenhouse gas emission of major plastics in China: A commercial sector-scale perspective. Resources, Conservation and Recycling, 180, 106161. https://doi.org/https://doi.org/10.1016/j.resconrec.2022.106161
Ayu Wulandari, S., & Sultan Aji Muhammad Idris Samarinda, U. (2023). PEMANFAATAN LIMBAH PLASTIK DALAM MENGURANGI POPULASI SAMPAH DI LINGKUNGAN MASYARAKAT SAMARINDA. In Jurnal Pengabdian Masyarakat (Vol. 1, Issue 2). https://journal.uinsi.ac.id/index.php/SIMAS/index
Bardales Cruz, M., Saikawa, E., Hengstermann, M., Ramirez, A., McCracken, J. P., & Thompson, L. M. (2023). Plastic waste generation and emissions from the domestic open burning of plastic waste in Guatemala. Environmental Science: Atmospheres, 3(1), 156–167. https://doi.org/10.1039/d2ea00082b
Bułkowska, K., Zielińska, M., & Bułkowski, M. (2024). Blockchain-Based Management of Recyclable Plastic Waste. Energies, 17(12). https://doi.org/10.3390/en17122937
Delft, C. E. (2023). CO2-winst met kunststofrecyclaat. Een Overzicht van CO2-Kentallen van Mechanisch Kunststofrecyclaat Voor NRK Recycling.
Desy Apriani, Nur Azizah, N., Nova Ramadhona, & Dhiyah Ayu Rini Kusumawardhani. (2023). Optimasi Transparansi Data dalam Rantai Pasokan melalui Integrasi Teknologi Blockchain. Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi, 2(1), 1–10. https://doi.org/10.33050/mentari.v2i1.326
Environment, U. N. (2021). From Pollution to Solution: A global assessment of marine litter and plastic pollution. https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
Hakim, M. Z. (n.d.). Pengelolaan dan Pengendalian Sampah Plastik Berwawasan Lingkungan.
Hanis, N. M., Jamil, M. R. M., Yulu, J., Zalli, M. M. M., & Othman, M. S. (2025). Design and Development Research (DDR) Approach in Development of Value-Based Pedagogy Model in the Context of a Multiracial Country. Journal of Curriculum and Teaching, 14(1), 248–256. https://doi.org/10.5430/jct.v14n1p248
Inayatulloh, I. (2024). Pengembangan Model Teknologi Blockchain untuk Meningkatkan Transparansi Pengelolaan Sampah. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(3), 488–493.
Kouhizadeh, M., & Sarkis, J. (2018). Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains. Sustainability, 10(10). https://doi.org/10.3390/su10103652
Le, H. T., Quoc, K. Le, Nguyen, T. A., Dang, K. T., Vo, H. K., Luong, H. H., Le Van, H., Gia, K. H., Cao Phu, L. Van, Nguyen Truong Quoc, D., Huyen Nguyen, T., Son, H. X., & Duong-Trung, N. (2022). Medical-Waste Chain: A Medical Waste Collection, Classification and Treatment Management by Blockchain Technology. Computers, 11(7). https://doi.org/10.3390/computers11070113
Li, H., Aguirre-Villegas, H. A., Allen, R. D., Bai, X., Benson, C. H., Beckham, G. T., Bradshaw, S. L., Brown, J. L., Brown, R. C., Cecon, V. S., & others. (2022). Expanding plastics recycling technologies: chemical aspects, technology status and challenges. Green Chemistry, 24(23), 8899–9002.
Liang Quanwei, & Yu Liming. (2023). Assessment of carbon emission potential of polyvinyl chloride plastics. E3S Web of Conf., 393, 1031. https://doi.org/10.1051/e3sconf/202339301031
M. Fajar Wirayudha, & Paniran Paniran. (2024). Perancangan Aplikasi Waste Bank dengan Teknologi Blockchain. Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi, 2(2), 114–124. https://doi.org/10.61132/neptunus.v2i2.115
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., & Zhou, B. (Eds.). (2021). Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3–32). Cambridge University Press. https://doi.org/10.1017/9781009157896.001
Padzil, M. R., Abd Karim, A., & Husnin, H. (2021). Employing DDR to design and develop a flipped classroom and project based learning module to applying design thinking in design and technology. International Journal of Advanced Computer Science and Applications, 12(9).
Petrík, J., Genuino, H. C., Kramer, G. J., & Shen, L. (n.d.). Pyrolysis of Dutch mixed plastic waste: Lifecycle GHG emissions and carbon recovery efficiency assessment. Waste Management & Research, 0(0), 0734242X241306605. https://doi.org/10.1177/0734242X241306605
Pradhana, I., Arsawan, I., & Dewi, K. C. (2022). Persepsi Penerapan Teknologi Blockchain Untuk Ekonomi Sirkular Pada Plastic Bank. Repositori Politeknik Negeri Bali.
Ritchie, H. (2023). How much of global greenhouse gas emissions come from plastics? Our World in Data.
Ritchie, H., Samborska, V., & Roser, M. (2023). Plastic Pollution. Our World in Data.
Schade, A., Melzer, M., Zimmermann, S., Schwarz, T., Stoewe, K., & Kuhn, H. (2024). Plastic Waste Recycling─A Chemical Recycling Perspective. ACS Sustainable Chemistry & Engineering, 12(33), 12270–12288. https://doi.org/10.1021/acssuschemeng.4c02551
Sharma, S., Sharma, V., & Chatterjee, S. (2023). Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment - A review. Science of The Total Environment, 875, 162627. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162627
Tsakona, M., Baker, E., Rucevska, I., & lainnya. (2021). Drowning in Plastics: Marine Litter and Plastic Waste Vital Graphics. United Nations Environment Programme (UNEP). https://library.sprep.org/content/drowning-plastics-marine-litter-and-plastic-waste-vital-graphics
Tumu, K., Vorst, K., & Curtzwiler, G. (2023). Global plastic waste recycling and extended producer responsibility laws. J. Environ. Manage., 348(119242), 119242.
Vargas, M. (2025). How Blockchain is Transforming Plastic Waste Management. In Plastics Engineering. https://www.plasticsengineering.org/2025/03/how-blockchain-is-transforming-plastic-waste-management-008320/
Wakefield, F. (2022). Top 25 recycling facts and statistics for 2022: Plastic, paper and more. World Economic Forum. https://www.weforum.org/stories/2022/06/recycling-global-statistics-facts-plastic-paper/
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Andri Dwi Utomo, Jeffry, Ahmad Irfandi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.