Analysis of Factors Causing Toddler’s Malnutrition in Medan City Using the Random Forest Method
DOI:
10.33395/sinkron.v10i1.15380Keywords:
Classification, Feature Importance, Machine Learning, Nutritional Status, Random Forest, ToddlersAbstract
Malnutrition and severe malnutrition in toddlers remain critical public health concerns that impair physical growth, cognitive development, and long-term productivity. Deficiencies in essential nutrients increase the risks of stunting, weakened immunity, and developmental delays. Although interventions such as supplementation and routine anthropometric monitoring are implemented, comprehensive identification of multidimensional causal factors is still limited, reducing the effectiveness of targeted policies. This study aims to predict toddler nutritional status using a quantitative data mining approach. A dataset consisting of 328 samples and 17 features was collected from health facilities in Medan City, including Puskesmas, the Health Office, and Posyandu. A Random Forest Classifier was developed with missing-value handling, feature engineering, and feature importance analysis to identify dominant predictors of nutritional outcomes. The model achieved an overall accuracy of 92.42 percent and showed strong performance in identifying the “Normal” class, although predictive sensitivity for minority classes such as “Gizi Kurang” and “Gizi Buruk” remained comparatively lower. Feature importance analysis indicated that complete immunization and health insurance ownership were the most influential determinants of nutritional status. This research provides a machine learning–based tool for early nutritional risk prediction and offers data-driven insights to support more precise malnutrition interventions. Future enhancement may include expanding feature diversity and applying advanced interpretability techniques to strengthen model reliability. The findings reinforce the importance of evidence-based nutrition policy strategies that prioritize early prevention and improved child health outcomes.
Downloads
References
Akbar Ariyadi, M. Ramadani, Sri Lestanti, and Sabitul Kirom. 2024. “Klasifikasi Balita Stunting Menggunakan Random Forest Classifier Di Kabupaten Blitar.” JATI (Jurnal Mahasiswa Teknik Informatika) 7(6):3846–51. doi:10.36040/jati.v7i6.7822.
Aprilia, Yunita Nur, Dian Ahkam Sani, Nanda Martyan Anggadimas, Program Studi, Teknik Informatika, Fakultas Teknologi Informasi, and Universitas Merdeka Pasuruan. n.d. “Klasifikasi Status Penderita Gizi Stunting Pada Balita Menggunakan Metode Random Forest ( Studi Kasus Di Kelurahan Petamanan Kota Pasuruan ).” 143–54.
Badan Kebijakan Pembangunan Kesehatan, Kementerian Kesehatan RI. 2024. “Survei Status Gizi Indonesia (SSGI) 2024.”
Candra, Ersya Nadia, Imam Cholissodin, and Randy Cahya Wihandika. 2022. “Klasifikasi Status Gizi Balita Menggunakan Metode Optimasi Random Forest Dengan Algoritme Genetika (Studi Kasus: Puskesmas Cakru).” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer 6(5):2188–97.
Cappelli, Francesco, Gianfranco Castronuovo, Salvatore Grimaldi, and Vito Telesca. 2024. “Random Forest and Feature Importance Measures for Discriminating the Most Influential Environmental Factors in Predicting Cardiovascular and Respiratory Diseases.” International Journal of Environmental Research and Public Health 21(7). doi:10.3390/ijerph21070867.
DINKES Kota Medan. 2022. “Profil Kesehatan Tahun 2022 Kota Medan.” 100.
Gebeye, Leykun Getaneh, Eskezeia Yihunie Dessie, and Jemal Ayalew Yimam. 2023. “Predictors of Micronutrient Deficiency among Children Aged 6–23 Months in Ethiopia: A Machine Learning Approach.” Frontiers in Nutrition 10(January):1–13. doi:10.3389/fnut.2023.1277048.
Handayani, Putri, and Abd Charis Fauzan. 2024. “KLIK: Kajian Ilmiah Informatika Dan Komputer Machine Learning Klasifikasi Status Gizi Balita Menggunakan Algoritma Random Forest.” Media Online) 4(6):3064–72. doi:10.30865/klik.v4i6.1909.
Juwariyem, Juwariyem, Sriyanto Sriyanto, Sri Lestari, and Chairani Chairani. 2024. “Prediction of Stunting in Toddlers Using Bagging and Random Forest Algorithms.” Sinkron 8(2):947–55. doi:10.33395/sinkron.v8i2.13448.
Khusna, Nida Faoziatun, Alfidha Rahmah, and Rachmat Kahfiwan Nur. 2024. “Implementasi Random Forest Dalam Klasifikasi Kasus Stunting Pada Balita Dengan Hyperparameter Tuning Grid Search.” 2024(Senada):791–801.
Laia, Yuniati, Zuraidah Nasution, and Asriwati. 2023. “Analisis Faktor Risiko Kejadian Kurang Gizi Pada Balita Di Puskesmas Pembantu Tanjung Sari.” Jurnal Kesehatan Dan Fisioterapi 3(1):27–36.
Mubarok, Ahmad Hasan, Pujiono Pujiono, Dicky Setiawan, Duta Firdaus Wicaksono, and Eti Rimawati. 2025. “Parameter Testing on Random Forest Algorithm for Stunting Prediction.” Sinkron 9(1):107–16. doi:10.33395/sinkron.v9i1.14264.
Pangumbara’an, Mutiara Sukma Ghora et al. 2021. “KLASIFIKASI STATUS GIZI BALITA MENGGUNAKAN ALGORITMA K- NEAREST NEIGHBOR DAN NAÏVE BAYES.” Infotech: Journal of Technology Information 7(1):55–62.
Pratama, J., F. Fauziah, and I. D. Sholihati. 2023. “Metode K-Nearest Neighbor Dan Naive Bayes Dalam Menentukan Status Gizi Balita.” Brahmana: Jurnal … 4(2):214–21.
Purnama, Jajang Jaya. 2020. “Prediksi Child Malnutrition Dengan Algoritma Random Forest.”
Putri Ayu Firnanda, Litasya Shofwatillah, Fauziah Rahma, and Fatkhurokhman Fauzi. 2025. “Analisis Perbandingan Decision Tree Dan Random Forest Dalam Klasifikasi Penjualan Produk Pada Supermarket.” Emerging Statistics and Data Science Journal 3(1):445–61. doi:10.20885/esds.vol3.iss.1.art2.
Setiawan, Rizky, and Agung Triayudi. 2022. “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes Dan K-Nearest Neighbor Berbasis Web.” Jurnal Media Informatika Budidarma 6(2):777. doi:10.30865/mib.v6i2.3566.
Utara, BPS Provinsi Sumatera. 2023. “Profil Kesehatan Provinsi Sumatera Utara.” 1–462.
Verikas, A., A. Gelzinis, and M. Bacauskiene. 2011. “Mining Data with Random Forests: A Survey and Results of New Tests.” Pattern Recognition 44(2):330–49. doi:10.1016/j.patcog.2010.08.011.
WHO. 2015.“Stunting in a Nutshell.” https://www.who.int/news/item/19-11-2015-stunting-in-a-nutshell.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2026 Windi Saputri Simamora, Siti Sarah Harahap, Andre Pratama

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Moraref
PKP Index
Indonesia OneSearch
OCLC Worldcat
Index Copernicus
Scilit




















