Blockchain Disaster-Relief DApps with SVM and Data Anchors for Fraud-Prevention

Authors

  • Agil Zaky Ardhi Informatika, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional
  • Ratih Titi Komala Sari Informatika, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional
  • Novi Dian Nathasia Informatika, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional
  • Sari Ningsih Informatika, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional

DOI:

10.33395/sinkron.v10i1.15522

Keywords:

Blockchain, Disaster Relief, Digital Vouchers, Fraud Detection, Support Vector Machine

Abstract

VoucherAid and DataAnchor are prototype DApps for disaster-relief voucher processing that integrate on-chain rule enforcement, cryptographic data anchoring through fixed-size hash commitments, and an off-chain SVM-based analytics gateway. VoucherAid issues non-transferable vouchers, restricts redemption to certified merchants, and emits auditable events, while DataAnchor records time-stamped digests to support provenance verification without exposing sensitive content. A 200-record dataset was generated from on-chain logs and enriched with behavioral–temporal features derived from redemption activity. Experiments conducted in a single-node Ganache environment using a 70:30 split show that the SVM achieves 0.75 accuracy with perfect precision but limited recall for fraud (1.00 precision, 0.32 recall, 0.48 F1), indicating that the model cannot serve as a reliable stand-alone detector and is more appropriate as a conservative decision-support tool under human oversight. The prototype demonstrates that separating on-chain enforcement from off-chain analytics can enhance auditability and support model evolution without contract redeployment. However, the findings remain constrained by the small, partially synthetic dataset, the single-node evaluation environment, and programmatic labeling. Future work will expand datasets, incorporate richer temporal and graph-based features, adjust thresholds and class weights, and evaluate the system on multi-node networks to improve fraud recall while maintaining usability and inclusion.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alghanmi, N. A., Alghanmi, N. A., Alghanmi, S. A., Zhao, M., & Hussain, F. K. (2025). Data-driven approach for selection of on-chain vs off-chain carbon credits data storage methods. Knowledge-Based Systems, 310, 112871. https://doi.org/https://doi.org/10.1016/j.knosys.2024.112871

Baharmand, H., & Comes, T. (2019). Leveraging Partnerships with Logistics Service Providers in Humanitarian Supply Chains by Blockchain-based Smart Contracts. IFAC-PapersOnLine, 52(13), 12–17. https://doi.org/https://doi.org/10.1016/j.ifacol.2019.11.084

Cahyo, F. Y. N., & Hindarto, D. (2025). Smart Contract Architecture for a Blockchain-Driven Multi Criteria DSS in Forest Fire Monitoring and Response. Sinkron, 9(3), 1146–1158. https://doi.org/10.33395/sinkron.v9i3.15009

Feulner, S., Guggenberger, T., Lautenschlager, J., Urbach, N., & Völter, F. (2025). Self-sovereign identity in the public sector: Affordances, experimentation, and actualization. Government Information Quarterly, 42(3), 102052. https://doi.org/https://doi.org/10.1016/j.giq.2025.102052

Hindarto, D., Damastuti, F. A., Marzuki, I., Rachmadi, R. F., & Hariadi, M. (2025). Blockchain and MCDM Framework for Secure Geospatial Data in Landslide Risk Mitigation. International Journal of Intelligent Engineering & Systems, 18(4), 137–155. https://doi.org/10.22266/ijies2025.0531.09

Hindarto, D., Rachmadi, R. F., Hariadi, M., & Damastuti, F. A. (2025). Contextual Awareness System for Landslide Risk Recommendation in Crypto-Spatial. 2025 International Electronics Symposium (IES), 700–706. https://doi.org/10.1109/IES67184.2025.11161195

Hindarto, D., & Santoso, H. (2022). PERFORMANCE COMPARISON OF SUPERVISED LEARNING USING NON-NEURAL NETWORK AND NEURAL NETWORK. Janapati, 11, 49–62.

Hunt, K., Narayanan, A., & Zhuang, J. (2022). Blockchain in humanitarian operations management: A review of research and practice. Socio-Economic Planning Sciences, 80, 101175. https://doi.org/https://doi.org/10.1016/j.seps.2021.101175

Patel, N., Arora, A., & Aggarwal, M. (2024). Evaluating simulation tools for securing sensor data with blockchain: A comprehensive analysis. Measurement: Sensors, 33, 101233. https://doi.org/https://doi.org/10.1016/j.measen.2024.101233

Rtayli, N., & Enneya, N. (2020). Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization. Journal of Information Security and Applications, 55, 102596. https://doi.org/https://doi.org/10.1016/j.jisa.2020.102596

Hassan, M. U., Rehmani, M. H., & Chen, J. (2022). Privacy-preserving data sharing in disaster management using blockchain and edge computing. Future Generation Computer Systems, 133, 189–200.

https://doi.org/10.1016/j.future.2022.03.007

Kaur, P., & Singh, M. (2023). Blockchain-enabled disaster management system for humanitarian logistics: A systematic review. Computers & Industrial Engineering, 178, 109038.

https://doi.org/10.1016/j.cie.2023.109038

Li, H., Yang, T., & Zhao, J. (2022). Integrating machine learning with blockchain for fraud detection in digital transactions. Expert Systems with Applications, 201, 117056.

https://doi.org/10.1016/j.eswa.2022.117056

Rejeb, A., Keogh, J. G., & Treiblmaier, H. (2022). How blockchain technology can transform the humanitarian supply chain: A multiple-case study. Technological Forecasting and Social Change, 175, 121365.

https://doi.org/10.1016/j.techfore.2021.121365

Sharma, T., Gupta, S., & Bansal, R. (2023). Smart contract security: Vulnerabilities and detection methods. Computers & Security, 129, 103168.

https://doi.org/10.1016/j.cose.2023.103168

Zhou, Q., Wang, Z., & Xu, Y. (2024). Lightweight blockchain consensus for resource-constrained IoT in disaster response. Information Processing & Management, 61(2), 103387.

https://doi.org/10.1016/j.ipm.2024.103387

Downloads


Crossmark Updates

How to Cite

Ardhi, A. Z. ., Sari, R. T. K. ., Nathasia, N. D. ., & Ningsih, S. . (2026). Blockchain Disaster-Relief DApps with SVM and Data Anchors for Fraud-Prevention. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 10(1), 96-109. https://doi.org/10.33395/sinkron.v10i1.15522