Causal Analysis of Stunting Determinants Using the Peter-Clark and Greedy Equivalence Search Algorithms
DOI:
10.33395/sinkron.v10i1.15532Keywords:
Stunting; Causal Analysis; Peter-Clark Algorithm; Greedy Equivalence Search; Causal InferenceAbstract
Child stunting remains a major public health challenge, reflecting the long-term effects of inadequate nutrition, limited maternal education, and poor access to health services. Understanding the causal structure underlying these factors is essential to design effective interventions. This study employs two causal discovery algorithms Greedy Equivalence Search (GES) and Peter Clark (PC) to analyze the causal relationships among key determinants of stunting using secondary data from the West Bangka District Health Office (2024). The dataset includes eight variables related to anthropometric measurements, maternal characteristics, and environmental conditions. Model performance was evaluated using Directed Density (DD) and Causal Density (CD) metrics to measure the strength and sparsity of the causal networks. The GES algorithm produced a well-structured causal model showing that maternal education, posyandu (community health post) visits, and exclusive breastfeeding were primary causal drivers influencing height-for-age (TB/U) and weight-for-age (BB/U). The PC algorithm, based on conditional independence testing, revealed a similar but less dense causal network, identifying only direct and statistically robust associations. Evaluation results indicated that the PC model achieved a Directed Density (DD) of 0.66 and a Causal Density (CD) of 0.07, while the GES model showed higher directedness and complexity in its causal mapping. Both algorithms successfully identified meaningful causal structures among stunting-related variables, with GES capturing broader causal pathways and PC emphasizing stronger direct causal links. These findings demonstrate that integrating score-based and constraint-based causal models provides complementary insights into the mechanisms driving stunting.
Downloads
References
de Onis, M., & Branca, F. (2016). Childhood stunting: A global perspective. Maternal and Child Nutrition, 12, 12–26. https://doi.org/10.1111/mcn.12231
Dewanti, C., Ratnasari, V., & Rumiati, T. (2019). Pemodelan Faktor-faktor yang Memengaruhi Status Balita Stunting di Provinsi Jawa Timur Menggunakan Regresi Probit Biner. Jurnal Sains Dan Senit ITS, 8(2), 2337–3520.
Efrizal, W. (2020). Berdampakkah Pandemi Covid-19 Terhadap Stunting Di Bangka Belitung? Kebijakan Kesehatan Indonesia, 09(03), 154–157.
Herliansyah, V., Latuconsina, R., & Dinimaharawati, A. (2021). Prediksi Stunting pada Balita dengan Menggunakan Algoritma Klasifikasi Naive Bayes. E-Proceeding of Engineering, 8(5), 6642–6649.
Julianti, E., & Elni. (2021). Faktor-Faktor yang Berhubungan dengan Kejadian Stunting pada Balita. JITK Bhamada, 12(2), 2–7.
Khairani, Mursyita, A., & Darmawa, S. (2020). Situasi Stunting di Indonesia. Pusat Data dan Informasi Kementrian Kesehatan RI.
Lonang, S., & Normawati, D. (2022). Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination. Jurnal Media Informatika Budidarma, 6(1), 49–56. https://doi.org/10.30865/mib.v6i1.3312
Rahmadi, R. (2019). Finding stable causal structures from clinical data. 63–78.
Rezaeizadeh, G., Mansournia, A., Keshtkar, A., Farahani, Z., Zarepour, F., & Sharafkhah, M. (2024). Articles Maternal education and its in fl uence on child growth and nutritional status during the fi rst two years of life : a systematic review and meta-analysis. EClinicalMedicine, 71, 102574. https://doi.org/10.1016/j.eclinm.2024.102574
Sumardiyono, S. (2020). Pengaruh Usia, Tinggi Badan Dan Riwayat Pemberian Asi Eksklusif Terhadap Stunting Pada Balita. Medika Respati : Jurnal Ilmiah Kesehatan, 15(1), 1. https://doi.org/10.35842/mr.v15i1.269
Sumarni, S., Oktavianisya, N., & Suprayitno, E. (2020). Pemberian Air Susu Ibu Eksklusif Berhubungan dengan Kejadian Stunting pada Balita di Pulau Mandangin Kabupaten Sumenep Provinsi Jawa Timur. Jurnal Riset Hesti Medan Akper Kesdam I/BB Medan, 5(1), 39–43. https://doi.org/10.34008/jurhesti.v5i1.174
Sutarno, H. H., & Telkom, U. (2021). PREDIKSI STUNTING PADA BALITA DENGAN MENGGUNAKAN ALGORITMA KLASIFIKASI K-NEAREST NEIGHBORS STUNTING PREDICTION IN CHILDREN USING K-NEAREST NEIGHBORS CLASSIFICATION ALGORITHM. 8(5), 6657–6661.
Tou, N., Effendy, C., & Rahmadi, R. (2021). Causal Relations of Factors Representing the Elderly Independence in Doing Activities of Daily Livings Using S3C-Latent Algorithm. International Journal of Artificial Intelligence Research, 5(1), 65–77. https://doi.org/10.29099/ijair.v5i1.206
Widia Pebrianti, S., Astuti, R., & M Basysyar, F. (2024). Penerapan Algoritma K-Nearest Neighbor Dalam Klasifikasi Status Stunting Balita Di Desa Bojongemas. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 2479–2488. https://doi.org/10.36040/jati.v8i2.8448
How to Cite
Issue
Section
License
Copyright (c) 2025 Nurhaeka Tou, Putri Mentari Endraswari, Syafiranur Iftizam

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Moraref
PKP Index
Indonesia OneSearch
OCLC Worldcat
Index Copernicus
Scilit




















