Facial Expression Recognition for Monitoring Learning Satisfaction in Smart Learning Environments Using MobileNetV2

Authors

  • Sandy Radytia Magister Teknologi Informasi, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional
  • Ucuk Darusalam Magister Teknologi Informasi, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional

DOI:

10.33395/sinkron.v10i1.15565

Keywords:

FER, MobileNetV2, SLE, LSI, Edge-computing

Abstract

This study develops a lightweight, privacy-aware Facial Expression Recognition (FER) framework to monitor learning satisfaction in Smart Learning Environments (SLEs). Using MobileNetV2 with a two-stage training scheme on the FER2013 dataset and evaluated on 35,000 test samples, the system addresses two main questions: (1) how effectively a customized MobileNetV2 recognizes core student expressions under authentic classroom conditions, and (2) how temporal aggregation and confidence calibration improve the stability of a Learning Satisfaction Index (LSI). The model achieves 0.39 accuracy and 0.34 macro-F1, with strong performance for happy, neutral, and surprise, while challenges remain for fear–surprise and neutral–sad. Temporal smoothing reduces prediction noise and enhances the reliability of LSI signals for instructional decision-making. The findings highlight practical implications for education, particularly in supporting real-time formative assessment and improving teachers’ awareness of student engagement through privacy-preserving, on-device affect monitoring.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Hindarto, D. (2023a). Comparative Analysis VGG16 Vs MobileNet Performance for Fish Identification. 3(December), 270–280.

Hindarto, D. (2023b). Enhancing Road Safety with Convolutional Neural Network Traffic Sign Classification. Sinkron, 8(4), 2810–2818. https://doi.org/10.33395/sinkron.v8i4.13124

Johnson, G., Argyriou, V., Barman, S., & Politis, C. (2025). Assistive facial expression recognition for children with autism using re-enactment. Computers in Human Behavior Reports, 20(May). https://doi.org/10.1016/j.chbr.2025.100800

Krithika L.B, & Lakshmi Priya GG. (2016). Student Emotion Recognition System (SERS) for e-learning Improvement Based on Learner Concentration Metric. Procedia Computer Science, 85, 767–776. https://doi.org/https://doi.org/10.1016/j.procs.2016.05.264

Li, S., Wang, J., Tian, L., Wang, J., & Huang, Y. (2025). A fine-grained human facial key feature extraction and fusion method for emotion recognition. Scientific Reports, 15(1), 6153. https://doi.org/10.1038/s41598-025-90440-2

Luo, Y., & Huang, L. (2023). Research on the Application of Deep Learning Algorithm in Face Expression Recognition. 2023 Global Conference on Information Technologies and Communications (GCITC), 1–4. https://doi.org/10.1109/GCITC60406.2023.10425903

Manalu, H. V., & Rifai, A. P. (2024). Detection of human emotions through facial expressions using hybrid convolutional neural network-recurrent neural network algorithm. Intelligent Systems with Applications, 21, 200339. https://doi.org/https://doi.org/10.1016/j.iswa.2024.200339

Nan, Y., Ju, J., Hua, Q., Zhang, H., & Wang, B. (2022). A-MobileNet: An approach of facial expression recognition. Alexandria Engineering Journal, 61(6), 4435–4444. https://doi.org/https://doi.org/10.1016/j.aej.2021.09.066

Sajjad, M., Ullah, F. U. M., Ullah, M., Christodoulou, G., Alaya Cheikh, F., Hijji, M., Muhammad, K., & Rodrigues, J. J. P. C. (2023). A comprehensive survey on deep facial expression recognition: challenges, applications, and future guidelines. Alexandria Engineering Journal, 68, 817–840. https://doi.org/https://doi.org/10.1016/j.aej.2023.01.017

Sholikah, R. W., Ginasrdi, R. V. H., Nugroho, S. L. C., Ghozali, K., & Indrawanti, A. S. (2024). Real-time Facial Expression Recognition to Enhance Emotional Intelligence in Autism. Procedia Computer Science, 234, 222–229. https://doi.org/https://doi.org/10.1016/j.procs.2024.02.169

Sun, R., Wang, C., & Wang, Y. (2025). Exploring a non-parametric uncertain adaptive training method for facial expression recognition. Journal of Visual Communication and Image Representation, 104636. https://doi.org/https://doi.org/10.1016/j.jvcir.2025.104636

Tabuenca, B., Uche-Soria, M., Greller, W., Hernández-Leo, D., Balcells-Falgueras, P., Gloor, P., & Garbajosa, J. (2024). Greening smart learning environments with Artificial Intelligence of Things. Internet of Things, 25, 101051. https://doi.org/https://doi.org/10.1016/j.iot.2023.101051

Tonguç, G., & Ozaydın Ozkara, B. (2020). Automatic recognition of student emotions from facial expressions during a lecture. Computers & Education, 148, 103797. https://doi.org/https://doi.org/10.1016/j.compedu.2019.103797

Downloads


Crossmark Updates

How to Cite

Radytia, S., & Darusalam, U. . (2026). Facial Expression Recognition for Monitoring Learning Satisfaction in Smart Learning Environments Using MobileNetV2. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 10(1), 396-405. https://doi.org/10.33395/sinkron.v10i1.15565