Enhanced Performance Evaluation of VGG16 and ResNet50 for Deepfake Detection Using Local Ternary Pattern
DOI:
10.33395/sinkron.v10i1.15582Keywords:
Celeb-DF, Deepfake, Local Ternary Pattern, ResNet50, Transfer Learning, VGG16Abstract
Deepfake video generation has become increasingly sophisticated, posing challenges for detection methods that rely solely on convolutional neural networks (CNNs without explicit texture enhancement). Many existing approaches have limited robustness in capturing subtle texture inconsistencies caused by manipulation, compression, and noise. This study investigates the integration of Local Ternary Pattern (LTP)–based texture enhancement with transfer learning models for deepfake video detection. Specifically, VGG16 and ResNet50 architectures are evaluated using the Celeb-DF (v2) dataset. LTP is employed to extract fine-grained texture features due to its higher robustness to illumination variations and noise compared to conventional descriptors such as Local Binary Pattern (LBP). Video frames are processed individually and used to train CNN classifiers, followed by evaluation at both frame and video levels. Experimental results show that ResNet50 outperforms VGG16, achieving a test accuracy of 93% with a validation loss of 0.2228, while VGG16 reaches an accuracy of 88% with a validation loss of 0.2636. Further testing on 20 withheld videos demonstrates that ResNet50 correctly classifies all samples, whereas VGG16 misclassifies two real videos, indicating lower robustness to real-video misclassification. These results demonstrate that LTP-based texture enhancement effectively supports CNN-based deepfake detection and that deeper architectures benefit more from enriched texture representations. This study provides empirical insights into improving robustness and reliability in deepfake video classification.
Downloads
References
Albashish, D., Al-Sayyed, R., Abdullah, A., Ryalat, M. H., & Ahmad Almansour, N. (2021). Deep CNN Model based on VGG16 for Breast Cancer Classification. 2021 International Conference on Information Technology, ICIT 2021 - Proceedings, (July), 805–810. https://doi.org/10.1109/ICIT52682.2021.9491631
Angelika Septi Rahayu, R., & Santoso, H. (2023). Analysis of Fake Face Images: Detecting the Authenticity of Manipulated Images Using Variational Autoencoder Methods and Deep Neural Network Forensics. Sibatik Journal | Volume, 2(9), 2701–2726. Retrieved from https://publish.ojs-indonesia.com/index.php/SIBATIK
Arini, A., Bahaweres, R. B., & Al Haq, J. (2022). Quick Classification of Xception And Resnet-50 Models on Deepfake Video Using Local Binary Pattern. 2021 International Seminar on Machine Learning, Optimization, and Data Science, ISMODE 2021, (January), 254–259. https://doi.org/10.1109/ISMODE53584.2022.9742852
Ashani, Z. N., Syafidza, I., Ilias, C., Ng, K. Y., Kamel, M. R., Jarno, A. D., & Zamri, N. Z. (2025). Comparative Analysis of Deepfake Image Detection Method Using VGG16 , VGG19 and ResNet50. 1(1), 16–28.
Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., & Ferrer, C. C. (2020). The DeepFake Detection Challenge (DFDC) Dataset. Retrieved from http://arxiv.org/abs/2006.07397
Indonesia, C. (2024). Perusahaan Inggris Kena Tipu, Transfer Rp400 M Gara-gara Deepfake. Retrieved from CNN Indonesia website: https://www.cnnindonesia.com/teknologi/20240517131238-185-1098903/perusahaan-inggris-kena-tipu-transfer-rp400-m-gara-gara-deepfake
Jin, R., Li, H., Pan, J., Ma, W., & Lin, J. (2021). Face Recognition Based on MTCNN and FaceNet. Retrieved from www.aaai.org
Kamal, & Ez-zahraouy, H. (2023). A comparison between the VGG16 , VGG19 and ResNet50 architecture frameworks for classi cation of normal and CLAHE processed medical images. Research Square, 0–16.
Khalil, S. S., Youssef, S. M., & Saleh, S. N. (2021). Article icaps-dfake: An integrated capsule-based model for deepfake image and video detection. Future Internet, 13(4). https://doi.org/10.3390/fi13040093
Kohli, A., & Gupta, A. (2021). Detecting DeepFake, FaceSwap and Face2Face facial forgeries using frequency CNN. Multimedia Tools and Applications, 80(12), 18461–18478. https://doi.org/10.1007/s11042-020-10420-8
Kurniadi, D., Shidiq, R. M., & Mulyani, A. (2025). Comparison of Optimizer Use in White Blood Cell Classification Employing CNN. 14(February), 77–86.
L, S. K. B., V, S. N., & M, S. K. (2022). Enhanced Local Ternary Pattern method for Face Recognition. 66(2), 139–143. https://doi.org/10.37398/JSR.2022.660218
Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2020). Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3204–3213. https://doi.org/10.1109/CVPR42600.2020.00327
Malik, A., Kuribayashi, M., Abdullahi, S. M., & Khan, A. N. (2022). DeepFake Detection for Human Face Images and Videos: A Survey. IEEE Access, 10(January), 18757–18775. https://doi.org/10.1109/ACCESS.2022.3151186
Maulana, G. (2023). Beredar Video Jokowi Fasih Mandarin, Kominfo: Editan AI Menyesatkan! Retrieved from detikNews website: https://news.detik.com/berita/d-7003320/beredar-video-jokowi-fasih-mandarin-kominfo-editan-ai-menyesatkan
Nirkin, Y., Wolf, L., Keller, Y., & Hassner, T. (2020). DeepFake Detection Based on the Discrepancy Between the Face and its Context. 1–10. Retrieved from http://arxiv.org/abs/2008.12262
Putra, A. E., Naufal, M. F., & Prasetyo, V. R. (2023). Klasifikasi Jenis Rempah Menggunakan Convolutional Neural Network dan Transfer Learning. 9(1), 12–18.
Rana, M. S., Nobi, M. N., Murali, B., & Sung, A. H. (2022). Deepfake Detection: A Systematic Literature Review. IEEE Access, 10, 25494–25513. https://doi.org/10.1109/ACCESS.2022.3154404
Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Niessner, M. (2019). FaceForensics++: Learning to detect manipulated facial images. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob, 1–11. https://doi.org/10.1109/ICCV.2019.00009
Tan, X., Triggs, W., Tan, X., Triggs, W., Local, E., Feature, T., … Triggs, B. (2011). Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions.
Victor Ikechukwu, A., Murali, S., Deepu, R., & Shivamurthy, R. C. (2021). ResNet-50 vs VGG-19 vs training from scratch: A comparative analysis of the segmentation and classification of Pneumonia from chest X-ray images. Global Transitions Proceedings, 2(2), 375–381. https://doi.org/10.1016/j.gltp.2021.08.027
Wodajo, D., Atnafu, S., & Akhtar, Z. (2023). Deepfake Video Detection Using Generative Convolutional Vision Transformer. (Dl). Retrieved from http://arxiv.org/abs/2307.07036
Xu, B., Liu, J., Liang, J., Lu, W., & Zhang, Y. (2021). DeepFake Videos Detection Based on Texture Features. Computers, Materials and Continua, 68(1), 1375–1388. https://doi.org/10.32604/cmc.2021.016760
Yang, S., & Berdine, G. (2017). The receiver operating characteristic ( ROC ) curve. 5(19), 34–36. https://doi.org/10.12746/swrccc.v5i19.391
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2026 Ghifari Ferdian Rizqullah, Puspa Eosina, Andik Eko Kristus Pramuko

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






















Moraref
PKP Index
Indonesia OneSearch
OCLC Worldcat
Index Copernicus
Scilit
