Enhanced Performance Evaluation of VGG16 and ResNet50 for Deepfake Detection Using Local Ternary Pattern

Authors

  • Ghifari Ferdian Rizqullah Teknik Informatika, Universitas Ibn Khaldun, Indonesia
  • Puspa Eosina Teknik Informatika, Universitas Ibn Khaldun, Indonesia
  • Andik Eko Kristus Pramuko Teknik Informatika, Universitas Ibn Khaldun, Indonesia

DOI:

10.33395/sinkron.v10i1.15582

Keywords:

Celeb-DF, Deepfake, Local Ternary Pattern, ResNet50, Transfer Learning, VGG16

Abstract

Deepfake video generation has become increasingly sophisticated, posing challenges for detection methods that rely solely on convolutional neural networks (CNNs without explicit texture enhancement). Many existing approaches have limited robustness in capturing subtle texture inconsistencies caused by manipulation, compression, and noise. This study investigates the integration of Local Ternary Pattern (LTP)–based texture enhancement with transfer learning models for deepfake video detection. Specifically, VGG16 and ResNet50 architectures are evaluated using the Celeb-DF (v2) dataset. LTP is employed to extract fine-grained texture features due to its higher robustness to illumination variations and noise compared to conventional descriptors such as Local Binary Pattern (LBP). Video frames are processed individually and used to train CNN classifiers, followed by evaluation at both frame and video levels. Experimental results show that ResNet50 outperforms VGG16, achieving a test accuracy of 93% with a validation loss of 0.2228, while VGG16 reaches an accuracy of 88% with a validation loss of 0.2636. Further testing on 20 withheld videos demonstrates that ResNet50 correctly classifies all samples, whereas VGG16 misclassifies two real videos, indicating lower robustness to real-video misclassification. These results demonstrate that LTP-based texture enhancement effectively supports CNN-based deepfake detection and that deeper architectures benefit more from enriched texture representations. This study provides empirical insights into improving robustness and reliability in deepfake video classification.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Albashish, D., Al-Sayyed, R., Abdullah, A., Ryalat, M. H., & Ahmad Almansour, N. (2021). Deep CNN Model based on VGG16 for Breast Cancer Classification. 2021 International Conference on Information Technology, ICIT 2021 - Proceedings, (July), 805–810. https://doi.org/10.1109/ICIT52682.2021.9491631

Angelika Septi Rahayu, R., & Santoso, H. (2023). Analysis of Fake Face Images: Detecting the Authenticity of Manipulated Images Using Variational Autoencoder Methods and Deep Neural Network Forensics. Sibatik Journal | Volume, 2(9), 2701–2726. Retrieved from https://publish.ojs-indonesia.com/index.php/SIBATIK

Arini, A., Bahaweres, R. B., & Al Haq, J. (2022). Quick Classification of Xception And Resnet-50 Models on Deepfake Video Using Local Binary Pattern. 2021 International Seminar on Machine Learning, Optimization, and Data Science, ISMODE 2021, (January), 254–259. https://doi.org/10.1109/ISMODE53584.2022.9742852

Ashani, Z. N., Syafidza, I., Ilias, C., Ng, K. Y., Kamel, M. R., Jarno, A. D., & Zamri, N. Z. (2025). Comparative Analysis of Deepfake Image Detection Method Using VGG16 , VGG19 and ResNet50. 1(1), 16–28.

Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., & Ferrer, C. C. (2020). The DeepFake Detection Challenge (DFDC) Dataset. Retrieved from http://arxiv.org/abs/2006.07397

Indonesia, C. (2024). Perusahaan Inggris Kena Tipu, Transfer Rp400 M Gara-gara Deepfake. Retrieved from CNN Indonesia website: https://www.cnnindonesia.com/teknologi/20240517131238-185-1098903/perusahaan-inggris-kena-tipu-transfer-rp400-m-gara-gara-deepfake

Jin, R., Li, H., Pan, J., Ma, W., & Lin, J. (2021). Face Recognition Based on MTCNN and FaceNet. Retrieved from www.aaai.org

Kamal, & Ez-zahraouy, H. (2023). A comparison between the VGG16 , VGG19 and ResNet50 architecture frameworks for classi cation of normal and CLAHE processed medical images. Research Square, 0–16.

Khalil, S. S., Youssef, S. M., & Saleh, S. N. (2021). Article icaps-dfake: An integrated capsule-based model for deepfake image and video detection. Future Internet, 13(4). https://doi.org/10.3390/fi13040093

Kohli, A., & Gupta, A. (2021). Detecting DeepFake, FaceSwap and Face2Face facial forgeries using frequency CNN. Multimedia Tools and Applications, 80(12), 18461–18478. https://doi.org/10.1007/s11042-020-10420-8

Kurniadi, D., Shidiq, R. M., & Mulyani, A. (2025). Comparison of Optimizer Use in White Blood Cell Classification Employing CNN. 14(February), 77–86.

L, S. K. B., V, S. N., & M, S. K. (2022). Enhanced Local Ternary Pattern method for Face Recognition. 66(2), 139–143. https://doi.org/10.37398/JSR.2022.660218

Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2020). Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3204–3213. https://doi.org/10.1109/CVPR42600.2020.00327

Malik, A., Kuribayashi, M., Abdullahi, S. M., & Khan, A. N. (2022). DeepFake Detection for Human Face Images and Videos: A Survey. IEEE Access, 10(January), 18757–18775. https://doi.org/10.1109/ACCESS.2022.3151186

Maulana, G. (2023). Beredar Video Jokowi Fasih Mandarin, Kominfo: Editan AI Menyesatkan! Retrieved from detikNews website: https://news.detik.com/berita/d-7003320/beredar-video-jokowi-fasih-mandarin-kominfo-editan-ai-menyesatkan

Nirkin, Y., Wolf, L., Keller, Y., & Hassner, T. (2020). DeepFake Detection Based on the Discrepancy Between the Face and its Context. 1–10. Retrieved from http://arxiv.org/abs/2008.12262

Putra, A. E., Naufal, M. F., & Prasetyo, V. R. (2023). Klasifikasi Jenis Rempah Menggunakan Convolutional Neural Network dan Transfer Learning. 9(1), 12–18.

Rana, M. S., Nobi, M. N., Murali, B., & Sung, A. H. (2022). Deepfake Detection: A Systematic Literature Review. IEEE Access, 10, 25494–25513. https://doi.org/10.1109/ACCESS.2022.3154404

Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Niessner, M. (2019). FaceForensics++: Learning to detect manipulated facial images. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob, 1–11. https://doi.org/10.1109/ICCV.2019.00009

Tan, X., Triggs, W., Tan, X., Triggs, W., Local, E., Feature, T., … Triggs, B. (2011). Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions.

Victor Ikechukwu, A., Murali, S., Deepu, R., & Shivamurthy, R. C. (2021). ResNet-50 vs VGG-19 vs training from scratch: A comparative analysis of the segmentation and classification of Pneumonia from chest X-ray images. Global Transitions Proceedings, 2(2), 375–381. https://doi.org/10.1016/j.gltp.2021.08.027

Wodajo, D., Atnafu, S., & Akhtar, Z. (2023). Deepfake Video Detection Using Generative Convolutional Vision Transformer. (Dl). Retrieved from http://arxiv.org/abs/2307.07036

Xu, B., Liu, J., Liang, J., Lu, W., & Zhang, Y. (2021). DeepFake Videos Detection Based on Texture Features. Computers, Materials and Continua, 68(1), 1375–1388. https://doi.org/10.32604/cmc.2021.016760

Yang, S., & Berdine, G. (2017). The receiver operating characteristic ( ROC ) curve. 5(19), 34–36. https://doi.org/10.12746/swrccc.v5i19.391

Downloads


Crossmark Updates

How to Cite

Rizqullah, G. F., Eosina, P. ., & Pramuko, A. E. K. . (2026). Enhanced Performance Evaluation of VGG16 and ResNet50 for Deepfake Detection Using Local Ternary Pattern. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 10(1), 701-712. https://doi.org/10.33395/sinkron.v10i1.15582