Classification of Instagram and TikTok Addiction Levels among University Students Using the Naive Bayes Classifier

Authors

  • Indri Monica Cristiani Silalahi Informatics Engineering Study Program, Telkom University, Purwokerto Indonesia
  • Ummi Athiyah Data Science Study Program, Telkom University, Purwokerto, Indonesia
  • Diandra Chika Fransisca Informatics Engineering Study Program, Telkom University, Purwokerto Indonesia

DOI:

10.33395/sinkron.v10i1.15583

Keywords:

Social Media; Addiction; Naive Bayes Classifier; Instagram; TikTok

Abstract

The widespread use of gadgets and internet connectivity has become an essential aspect of daily life, especially through intensive interaction with social media platforms. Excessive usage can lead to addictive behaviors that disrupt students’ academic productivity and concentration. Although research on social media addiction continues to grow, few studies specifically examine platform-level addiction (Instagram vs. TikTok) using multi-class classification approaches. Therefore, this study aims to assess the level of social media addiction among university students, focusing on users of Instagram and TikTok at Telkom University Purwokerto. The analysis employs the Naive Bayes Classifier algorithm using data collected from 100 respondents. Model performance is evaluated through a multi-class confusion matrix to compute accuracy, precision, recall, and F1-score. Separate datasets for Instagram and TikTok are used to enable platform-specific behavioral assessment. The results show that the Naive Bayes Classifier achieves strong performance, with 93% accuracy for the Instagram dataset and 90% for the TikTok dataset. Precision scores reach 95% and 91%, recall values 93% and 90%, and F1-scores 93% and 90%, respectively. These findings confirm that Naive Bayes is effective for classifying students’ levels of social media addiction. Overall, this research contributes a reliable machine-learning–based approach for evaluating digital behavior and provides insights for early detection, enabling universities to design targeted interventions for students at risk of problematic usage. The methodology may also be extended to analyze engagement patterns on emerging social media platforms in future studies.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ahmad, S., Insani, N., & Salim, M. (2024). Analysis of Cyberbullying on Social Media Using A Comparison of Naive Bayes, Random Forest, and SVM Algorithms. Jurnal Teknologi Informasi dan Pendidikan, 17(1), 75-86. doi:https://doi.org/10.24036/jtip.v17i1.807

Basri, F. N., Sabri, F., & Rahimi, M. K. (2022). Social Media Addiction and Academic Performance of University Students. The Malaysian Journal of Islamic Sciences, 34(2), 1-17.

Fikri, M. I., Elvia, B., Iskandar, I., & Syhtia, E. P. (2024). Klasifikasi Tingkat Kecanduan Internet Terhadap Remaja Pekanbaru Melalui Pendekatan Algoritma Naive Bayes. ZONAsi: Jurnal Sistem Informasi, 6(2), 424-436. doi:https://doi.org/10.31849/zn.v6i2.20191

Mou, Q., Zhuang, J., Wu, Q., Zhong, Y., Dai, Q., Cao, X., . . . Zhao, M. (2024). Social media addiction and academic engagement as serial mediators between social anxiety and academic performance among college students. BMC Psychology, 12(1), 190. doi:https://doi.org/10.1186/s40359-024-01635-7

Parinduri, F. Z., Dewi, R., & Susiani, S. (2022). Classification of internet addiction levels in students using the Naive Bayes algorithm. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(3), 257-264. doi:https://doi.org/10.55123/jomlai.v1i3.965

Putri, V. A., Vitianingsih, A. V., Hamidan, R., Maukar, A. L., & Pratitis, N. T. (2024). Sentiment analysis on social media Instagram of depression issues using Naive Bayes method. INOVTEK Polbeng – Informatics Series, 9(2), 802-813. doi:https://doi.org/10.35314/spchsk42

Riyanto, A. D. (2021, August 18). Hootsuite (We are Social): Indonesian Digital Report 2021. Retrieved from Digital 2021 Indonesia: https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2021/

Saepudin, S., Widiastuti, S., & Irawan, C. (2023). Analisis Sentimen Ulasan Platform Media Sosial Menggunakan Algoritma Naive Bayes Classifier. Journal Sisfokom (System Information and Computers), 12(2), 236-243. doi:10.32736/sisfokom.v12i2.1650

Satria, A. T., Hasanah, H., & Oktaviani, I. (2025). Predicting Social Media Addiction Using Machine Learning and Interactive Visualization with Streamlit. Journal Bit-Tech, 8(1), 778-788. doi: https://doi.org/10.32877/bt.v8i1.2715

Setiawan, A., Cendana, W., Ayres, M., Yuldashev, A. A., & Setyawati, S. P. (2023). Development and validation of a self-assessment-based instrument to measure elementary school students’ attitudes in online learning. REID (Research and Evaluation in Education), 9(2), 184-197. doi:https://doi.org/10.21831/reid.v9i2.52083

Sibarani, J., Manalu, R., Hutasoit, D. P., Telaumbanua, W. A., & Elyakim, V. A. (2025). Detection of mental health tendencies using Naive Bayes based on social media activity. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(2), 80-87. doi:https://doi.org/10.55123/jomlai.v4i2.5959

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. PLoS ONE, 14(11), e0224365. doi: https://doi.org/10.1371/journal.pone.0224365

Watt, J., Mitchell, L., & Tuke, J. (2024). Personality Profiling: How informative are social media profiles in predicting personal information? arXiv. doi:https://doi.org/10.48550/arXiv.2309.13065

Yang, C., Mousavi, S., Dash, A., Gummadi, K. P., & Weber, I. (2025). Studying Behavioral Addiction by Combining Surveys and Digital Traces: A Case Study of TikTok. arXiv. doi:https://doi.org/10.48550/arXiv.2501.15539

Zhao, L. (2021). The impact of social media use types and social media addiction on subjective well-being of college students: A comparative analysis of addicted and non-addicted students. Computers in Human Behavior Reports, 4(2), 100122. doi: 10.1016/j.chbr.2021.100122

Downloads


Crossmark Updates

How to Cite

Silalahi, I. M. C., Athiyah, U., & Fransisca, D. C. (2026). Classification of Instagram and TikTok Addiction Levels among University Students Using the Naive Bayes Classifier. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 10(1), 253-262. https://doi.org/10.33395/sinkron.v10i1.15583