Classification of Instagram and TikTok Addiction Levels among University Students Using the Naive Bayes Classifier
DOI:
10.33395/sinkron.v10i1.15583Keywords:
Social Media; Addiction; Naive Bayes Classifier; Instagram; TikTokAbstract
The widespread use of gadgets and internet connectivity has become an essential aspect of daily life, especially through intensive interaction with social media platforms. Excessive usage can lead to addictive behaviors that disrupt students’ academic productivity and concentration. Although research on social media addiction continues to grow, few studies specifically examine platform-level addiction (Instagram vs. TikTok) using multi-class classification approaches. Therefore, this study aims to assess the level of social media addiction among university students, focusing on users of Instagram and TikTok at Telkom University Purwokerto. The analysis employs the Naive Bayes Classifier algorithm using data collected from 100 respondents. Model performance is evaluated through a multi-class confusion matrix to compute accuracy, precision, recall, and F1-score. Separate datasets for Instagram and TikTok are used to enable platform-specific behavioral assessment. The results show that the Naive Bayes Classifier achieves strong performance, with 93% accuracy for the Instagram dataset and 90% for the TikTok dataset. Precision scores reach 95% and 91%, recall values 93% and 90%, and F1-scores 93% and 90%, respectively. These findings confirm that Naive Bayes is effective for classifying students’ levels of social media addiction. Overall, this research contributes a reliable machine-learning–based approach for evaluating digital behavior and provides insights for early detection, enabling universities to design targeted interventions for students at risk of problematic usage. The methodology may also be extended to analyze engagement patterns on emerging social media platforms in future studies.
Downloads
References
Ahmad, S., Insani, N., & Salim, M. (2024). Analysis of Cyberbullying on Social Media Using A Comparison of Naive Bayes, Random Forest, and SVM Algorithms. Jurnal Teknologi Informasi dan Pendidikan, 17(1), 75-86. doi:https://doi.org/10.24036/jtip.v17i1.807
Basri, F. N., Sabri, F., & Rahimi, M. K. (2022). Social Media Addiction and Academic Performance of University Students. The Malaysian Journal of Islamic Sciences, 34(2), 1-17.
Fikri, M. I., Elvia, B., Iskandar, I., & Syhtia, E. P. (2024). Klasifikasi Tingkat Kecanduan Internet Terhadap Remaja Pekanbaru Melalui Pendekatan Algoritma Naive Bayes. ZONAsi: Jurnal Sistem Informasi, 6(2), 424-436. doi:https://doi.org/10.31849/zn.v6i2.20191
Mou, Q., Zhuang, J., Wu, Q., Zhong, Y., Dai, Q., Cao, X., . . . Zhao, M. (2024). Social media addiction and academic engagement as serial mediators between social anxiety and academic performance among college students. BMC Psychology, 12(1), 190. doi:https://doi.org/10.1186/s40359-024-01635-7
Parinduri, F. Z., Dewi, R., & Susiani, S. (2022). Classification of internet addiction levels in students using the Naive Bayes algorithm. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(3), 257-264. doi:https://doi.org/10.55123/jomlai.v1i3.965
Putri, V. A., Vitianingsih, A. V., Hamidan, R., Maukar, A. L., & Pratitis, N. T. (2024). Sentiment analysis on social media Instagram of depression issues using Naive Bayes method. INOVTEK Polbeng – Informatics Series, 9(2), 802-813. doi:https://doi.org/10.35314/spchsk42
Riyanto, A. D. (2021, August 18). Hootsuite (We are Social): Indonesian Digital Report 2021. Retrieved from Digital 2021 Indonesia: https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2021/
Saepudin, S., Widiastuti, S., & Irawan, C. (2023). Analisis Sentimen Ulasan Platform Media Sosial Menggunakan Algoritma Naive Bayes Classifier. Journal Sisfokom (System Information and Computers), 12(2), 236-243. doi:10.32736/sisfokom.v12i2.1650
Satria, A. T., Hasanah, H., & Oktaviani, I. (2025). Predicting Social Media Addiction Using Machine Learning and Interactive Visualization with Streamlit. Journal Bit-Tech, 8(1), 778-788. doi: https://doi.org/10.32877/bt.v8i1.2715
Setiawan, A., Cendana, W., Ayres, M., Yuldashev, A. A., & Setyawati, S. P. (2023). Development and validation of a self-assessment-based instrument to measure elementary school students’ attitudes in online learning. REID (Research and Evaluation in Education), 9(2), 184-197. doi:https://doi.org/10.21831/reid.v9i2.52083
Sibarani, J., Manalu, R., Hutasoit, D. P., Telaumbanua, W. A., & Elyakim, V. A. (2025). Detection of mental health tendencies using Naive Bayes based on social media activity. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(2), 80-87. doi:https://doi.org/10.55123/jomlai.v4i2.5959
Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. PLoS ONE, 14(11), e0224365. doi: https://doi.org/10.1371/journal.pone.0224365
Watt, J., Mitchell, L., & Tuke, J. (2024). Personality Profiling: How informative are social media profiles in predicting personal information? arXiv. doi:https://doi.org/10.48550/arXiv.2309.13065
Yang, C., Mousavi, S., Dash, A., Gummadi, K. P., & Weber, I. (2025). Studying Behavioral Addiction by Combining Surveys and Digital Traces: A Case Study of TikTok. arXiv. doi:https://doi.org/10.48550/arXiv.2501.15539
Zhao, L. (2021). The impact of social media use types and social media addiction on subjective well-being of college students: A comparative analysis of addicted and non-addicted students. Computers in Human Behavior Reports, 4(2), 100122. doi: 10.1016/j.chbr.2021.100122
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2026 Diandra Chika Fransisca, Indri Monica Cristiani Silalahi, Ummi Athiyah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Moraref
PKP Index
Indonesia OneSearch
OCLC Worldcat
Index Copernicus
Scilit




















