User Satisfaction in Moo Opinion App: Machine Learning for Cooperative Segmentation

Authors

  • Citra Dewi Megawati Universitas Brawijaya
  • Bima Romadhon Parada Dian Palevi Institut Teknologi Nasional Malang
  • Teo Pei Kian Southern University College
  • Pramadika Ramanda Universitas Brawijaya

DOI:

10.33395/sinkron.v10i1.15589

Keywords:

User Satisfaction, Moo Opinion app, village Unit dairy cooperative, Machine learning, Random forest, kmeans clustering, PCA

Abstract

This study addresses the critical need to understand digital application user satisfaction within the agricultural cooperative sector, specifically for the Moo Opinion application at the Village Unit Dairy Cooperative (KUD). The study's primary novelty lies in the implementation of an integrated, sequential Machine Learning framework—combining Random Forest (RF), Principal Component Analysis (PCA), and K-Means Clustering—to provide a granular analysis of user behavior in a specialized dairy ecosystem. The methodology first utilized RF for key feature selection, followed by PCA for dimensionality reduction, and K-Means for precise user segmentation. Primary data was collected from 40 respondents (20 farmers, 20 customers). Key findings reveal that Service Quality (0.42) and Milk Quality (0.36) are the most significant drivers of satisfaction, considerably outweighing economic factors like Milk Price (0.08). PCA identified two core satisfaction dimensions: Quality-Service Synergy (explaining 56.7% variance) and Structural-Economic Factors (explaining 25.7% variance), confirming the dominance of non-economic aspects. K-Means Clustering successfully identified three segments: Highly Satisfied (45%), Moderately Satisfied (38%), and Low Satisfaction (17%), with high cluster validity (Silhouette Coefficient 0.71). A recognized limitation of this study is the small sample size (N=40), which may affect the generalizability of the findings to larger cooperative populations. However, the results offer significant practical implications, highlighting the need for KUD to prioritize digital service quality and product value over pricing strategies to enhance loyalty and prevent churn.

GS Cited Analysis

Downloads

Download data is not yet available.

Author Biographies

Citra Dewi Megawati, Universitas Brawijaya

Bima Romadhon Parada Dian Palevi, Institut Teknologi Nasional Malang

 

 

Teo Pei Kian, Southern University College

 

 

References

Binanto, I., B, J. P. K., & Leokadja, L. (2024). Perbandingan Metode Klasifikasi Random Forest Dan Support Vector Machine Terhadap Dataset Resiko Kanker Serviks. Jtriste, 11(1), 60–66. https://doi.org/10.55645/jtriste.v11i1.507

Budhathoki, M., Li, L., Xu, H., Zhang, W., Ma, X., Pandey, S., & Thomsen, M. (2026). Market dynamics and E-commerce satisfaction in China’s aquatic food sector: Machine learning and data insights. Aquaculture, 610(May 2025). https://doi.org/10.1016/j.aquaculture.2025.742904

Collins, S. P., Storrow, A., Liu, D., Jenkins, C. A., Miller, K. F., Kampe, C., & Butler, J. (2021). No Title 済無No Title No Title No Title. 167–186.

Firmansyah, F., & Yulianto, A. (2024). Pemodelan Pembelajaran Mesin untuk Prediksi Kesehatan Mental di Tempat Kerja. Jurnal Minfo Polgan, 13(1), 397–407. https://doi.org/10.33395/jmp.v13i1.13674

Hassoun, A., Marvin, H. J. P., Bouzembrak, Y., Barba, F. J., Castagnini, J. M., Pallarés, N., Rabail, R., Aadil, R. M., Bangar, S. P., Bhat, R., Cropotova, J., Maqsood, S., & Regenstein, J. M. (2023). Digital transformation in the agri-food industry: recent applications and the role of the COVID-19 pandemic. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1217813

Kiss, M., & Gazdecki, M. (2021). Sustainable Attitude. 1–28.

Kohli, A., & Narang, G. (2024). A Comparative Analysis of Digitization in the Agri-Food Sector-Innovations, Challenges, and Future Directions. International Journal of Advanced Research in Computer and Communication Engineering Impact Factor, 8(9), 182–193. https://doi.org/10.17148/IJARCCE.2024.13923

Kumar, U., & Shankar, R. (2024). Smart dairy: Unleashing emerging ICT-enabled lean dairy supply chains through data-driven decision-making. International Journal of Information Management Data Insights, 4(2), 100297. https://doi.org/10.1016/j.jjimei.2024.100297

Maioli, B. M., Ribeiro, M. G., de Carvalho, A., Gonçalves, L. A., Almeida, D. L. de, Valle de Zoppa, A. L. do, Leme, P. R., Negrão, J. A., & Gallo, S. B. (2024). Nutrition of lambs with chromium propionate and its effects on metabolism, performance and meat quality. Small Ruminant Research, 237(January). https://doi.org/10.1016/j.smallrumres.2024.107306

Mandagie, W. C., & Kristaung, R. (2025). The power of AI personalization: Mediated moderation in social & e-commerce. Jurnal Manajemen Dan Pemasaran Jasa, 18(1), 35–58. https://doi.org/10.25105/v18i1.21587

Megawati, C. D., Yuniarno, E. M., & Nugroho, S. M. S. (2019). Clustering of Female Avatar Face Features Consumers Choice using KMeans and SOM Algorithm. Proceedings - 2019 International Seminar on Intelligent Technology and Its Application, ISITIA 2019, 366–370. https://doi.org/10.1109/ISITIA.2019.8937279

Munch, D. M., Schmit, T. M., & Severson, R. M. (2021). Assessing the value of cooperative membership: A case of dairy marketing in the United States. Journal of Co-Operative Organization and Management, 9(1), 100129. https://doi.org/10.1016/j.jcom.2021.100129

Petrokolou, A., Bhonsale, S. S., Impe, J. F. Van, & Tsakali, E. (2025). Machine Learning Applications in Dairy Production. Proceedings of the 35th European Symposium on Computer Aided Process Engineering (ESCAPE 35), 4(July), 2454–2459. https://doi.org/10.69997/sct.109074

Polo-Triana, S., Gutierrez, J. C., & Leon-Becerra, J. (2024). Integration of Machine Learning in the Supply Chain for Decision Making: A Systematic Literature Review. Journal of Industrial Engineering and Management, 17(2), 344–372. https://doi.org/10.3926/jiem.6403

Rolando, B., & Bangsa, U. D. (2025). TECHNOLOGY USE IN RETAIL MANAGEMENT : A SYSTEMATIC. 3(1), 1–19.

Sama, V., Molua, E. L., Nkongho, R. N., & Ngosong, C. (2023). Potential of sodium benzoate additive to control food-borne pathogens and spoilage microbes on cassava (Manihot esculenta Crantz) fufu and shelf-life extension. Journal of Agriculture and Food Research, 11(January), 100521. https://doi.org/10.1016/j.jafr.2023.100521

Sarram, G., & Ivey, S. S. (2022). Evaluating the potential of online review data for augmenting traditional transportation planning performance management. Journal of Urban Management, 11(1), 123–136. https://doi.org/10.1016/j.jum.2022.01.001

Shenoy, A., & Rao, M. (2019). Got (clean) milk? Transparency, governance, and incentives for cleanliness in Indian dairy cooperatives. https://arefiles.ucdavis.edu/uploads/filer_public/90/0e/900e30bf-bd01-4ab2-a4b8-c505776a1249/2019_cow_project.pdf

Simões, A. R. P., Bánkuti, F. I., Borges, J. A. R., Roschel, M. S., & Nicholson, C. F. (2025). Dairy farmers’ satisfaction with the price paid by processors in competitive markets. Journal of Dairy Science, 108(3), 2315–2323. https://doi.org/10.3168/jds.2024-25737

Sutar, G., Arrawatia, R., Dhalmahapatra, K., Garg, A., & Kumar, D. (2023). Performance assessment of Dairy Cooperative Societies (DCSs): an AHP based composite index approach. Annals of Operations Research, 326(2), 751–782. https://doi.org/10.1007/s10479-022-04916-9

Tanjung, D., Asmara, A., Purnamadewi, Y. L., Ristianingrum, A., Dewi, I., & Rahmasari, L. F. (2025). Evaluating the Impact of Cooperative Services on Dairy Farm Performance in North Cianjur: An Importance-Performance Analysis Approach. Jurnal Penelitian Pendidikan IPA, 11(3), 639–649. https://doi.org/10.29303/jppipa.v11i3.10595

Tardaguila, J., Stoll, M., Gutiérrez, S., Proffitt, T., & Diago, M. P. (2021). Smart applications and digital technologies in viticulture: A review. Smart Agricultural Technology, 1(July), 100005. https://doi.org/10.1016/j.atech.2021.100005

Zhao, P., Bian, J., Ni, Z., Jin, W., Weyn, J., Fang, Z., Xiang, S., Dong, H., Zhang, B., Sun, H., Thambiratnam, K., & Zhang, Q. (2024). OMG-HD: A High-Resolution AI Weather Model for End-to-End Forecasts from Observations. 1–26. http://arxiv.org/abs/2412.18239

Downloads


Crossmark Updates

How to Cite

Megawati, C. D., Palevi, B. R. P. D., Teo Pei Kian, & Ramanda, P. . (2026). User Satisfaction in Moo Opinion App: Machine Learning for Cooperative Segmentation. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 10(1), 418-429. https://doi.org/10.33395/sinkron.v10i1.15589