Evaluation of MobileNet-Based Deep Features for Yogyakarta Traditional Batik Motif Classification

Authors

  • Umar Muhdhor Universitas Multi Data Palembang
  • Yohannes Universitas Multi Data Palembang

DOI:

10.33395/sinkron.v10i1.15668

Keywords:

Batik Classification, Cultural Heritage Preservation, Deep Learning, MobileNet, Support Vector Machine

Abstract

Batik is an Indonesian intangible cultural heritage that embodies profound philosophical, aesthetic, and cultural values. Yogyakarta batik motifs, such as Parang, Kawung, and Truntum, reflect Javanese wisdom and identity through distinctive geometric and floral patterns. In the digital era, artificial intelligence based image processing provides a promising approach to support the preservation and automatic recognition of traditional batik motifs. The objective of this study is to evaluate the effectiveness of MobileNet-based feature extraction combined with Support Vector Machine (SVM) classification for Yogyakarta batik motif recognition. The proposed method employs MobileNet as a convolutional feature extractor and SVM as a decision model to separate motif classes in the feature space. Experiments were conducted on 685 batik images consisting of three motif classes, with class imbalance handled using Synthetic Minority Over-sampling Technique (SMOTE). Model performance was evaluated using weighted accuracy, precision, recall, and F1-score under five-fold cross validation. The results show that MobileNetV3Large achieved the best performance with a weighted accuracy of 98.36%, followed by MobileNetV3Small and MobileNetV4Small. Statistical significance tests using the Friedman test and Wilcoxon signed-rank analysis confirm that the performance differences among the evaluated models are statistically significant. These findings indicate that MobileNetV3 architectures provide robust and discriminative feature representations for batik motif classification on limited yet structured datasets. This study contributes a validated MobileNet–SVM framework for batik recognition and supports ongoing efforts in the digital preservation of Indonesia’s cultural heritage. Future work will explore larger motif sets and cross-dataset evaluation to further improve generalization performance.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Agni Nalendra, R., Reyhan Dwi Fisena, M., & Herdianto, I. (2025). Klasifikasi citra digital batik jawa berdasarkan motif dan warna menggunakan metode Convolutional Neural Network. Prosiding Seminar Nasional Informatika Bela Negara, 5(1), 88–92. https://doi.org/10.33005/santika.v5i1.545

Akbar, A., & Mulyana, D. I. (2022). Optimasi klasifikasi batik betawi menggunakan data augmentasi dengan metode KNN dan GLCM. Jurnal Aplikasi Teknologi Informasi Dan Manajemen (JATIM), 3(2), 92–101. https://doi.org/10.31102/jatim.v3i2.1577

Akbar, M. D., Martanto, & Wijaya, Y. A. (2022). Klasifikasi motif batik jawa menggunakan algoritma K- Nearest Neighbors (Knn). JURSIMA (Jurnal Sistem Informasi Dan Manajemen, 10(2), 161–168.

Anggoro, D. A., Marzuki, A. A. T., & Supriyanti, W. (2023). Classification of solo batik patterns using deep learning convolutional neural networks algorithm. TELKOMNIKA (Telecommunication Computing Electronics and Control), 22(1), 232. https://doi.org/10.12928/telkomnika.v22i1.24598

Aras, S., Setyanto, A., & Rismayani. (2022). Deep learning untuk klasifikasi motif batik papua menggunakan EfficientNet dan Transfer Learning. Insect (Informatics and Security): Jurnal Teknik Informatika, 8(1), 11–20. https://doi.org/10.33506/insect.v8i1.1865

Arif, N. N., Magfirah, M., Febriani, F., Jannah, R., & Ula, M. (2024). Analisis dan perbandingan metode CNN dan SVM dalam mendeteksi batik nusantara. SENASTIKA , 1(1).

Arifin, S., & Nurfaizah, N. (2024). Klasifikasi motif batik menggunakan metode Convolutional Neural Network (CNN) dengan multi class clasification. Jurnal Ilmiah IT CIDA, 10(1), 30. https://doi.org/10.55635/jic.v10i1.206

Dani, A. R., & Handayani, I. (2024). Klasifikasi motif batik Yogyakarta menggunakan metode GLCM dan CNN. Jurnal Teknologi Terpadu, 10(2), 142–156. https://doi.org/10.54914/jtt.v10i2.1451

Fanani, G. P. I., Safitri, Y., Tristanti, N., Mu’min, M. A., Wijaya, S. A., & Famuji, T. S. (2025). Pengenalan citra batik tradisional menggunakan deep learning untuk klasifikasi motif daerah. Scientific : Journal of Computer Science and Informatics, 2(1).

Fathurrahman, I., Djamaluddin, M., Amri, Z., & Wathani, M. N. (2025). Klasifikasi motif batik nusantara menggunakan Vision Transformer (ViT) berbasis deep learning. Infotek: Jurnal Informatika Dan Teknologi, 8(2), 511–522. https://doi.org/10.29408/jit.v8i2.31108

Hidayatillah, W., & Jakfar, M. (2022). Klasifikasi batik di jawa timur berdasarkan analisis dimensi fraktal dengan menggunakan metode box counting. MATHunesa: Jurnal Ilmiah Matematika, 10(2), 349–358. https://doi.org/10.26740/mathunesa.v10n2.p349-358

Ihdal, I. M. (2021). Klasifikai kain khas batik dan kain khas sasirangan dengan menggunakan metode convolutional neural network. Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM), 6(1), 25–30. https://doi.org/10.20527/jtiulm.v6i1.62

Nafidanisa, Aldo, D., & Nicolaus. (2025). Klasifikasi motif batik semarang menggunakan convolutional neural network dengan VGG16. E-Proceeding of Engineering, 6814–6819.

Prayoga, A., Maimunah, Sukmasetya, P., Muhammad Resa Arif Yudianto, & Rofi Abul Hasani. (2023). Arsitektur convolutional neural network untuk model klasifikasi citra batik yogyakarta. Journal of Applied Computer Science and Technology, 4(2), 82–89. https://doi.org/10.52158/jacost.v4i2.486

Sahpira, M., & Yohannes. (2025). Transfer learning dengan mobileNetV2 untuk klasifikasi motif jumputan Palembang. Algoritme, 5(3), 264–273.

Setiaji, B., & Huda, A. A. (2022). Implementasi Gray Level Co-Occurrence Matrix (GLCM) untuk klasifikasi penyakit daun padi. Pseudocode, 9(1), 33–38. https://doi.org/10.33369/pseudocode.9.1.33-38

Sinaga, D., Jatmoko, C., Suprayogi, S., & Hedriyanto, N. (2024). Multi-Layer convolutional neural networks for batik image classification. Scientific Journal of Informatics, 11(2), 477–484. https://doi.org/10.15294/sji.v11i2.3309

Susanti, I. D. (2024). Yogyakarta batik image classification based on convolutional neural network. Advance Sustainable Science, Engineering and Technology, 6(1), 02401020. https://doi.org/10.26877/asset.v6i1.18002

Wona, M. M. A., Asyifa, S. A., Virgianti, R., Hamid, M. N., Handoko, I. M., Septiani, N. W. P., & Lestari, M. (2023). Klasifikasi batik indonesia menggunakan Convolutional Neural Network (CNN). Jurnal Rekayasa Teknologi Informasi (JURTI), 7(2), 172. https://doi.org/10.30872/jurti.v7i2.13694

Downloads


Crossmark Updates

How to Cite

Muhdhor, U., & Yohannes. (2026). Evaluation of MobileNet-Based Deep Features for Yogyakarta Traditional Batik Motif Classification. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 10(1), 389-395. https://doi.org/10.33395/sinkron.v10i1.15668