An Integrated K-Means and Composite Risk Scoring Framework for Urban Dengue Vulnerability Mapping

Authors

  • Moh. Fachri Alif Universitas Dian Nuswantoro
  • Amiq Fahmi Universitas Dian Nuswantoro

DOI:

10.33395/sinkron.v10i1.15748

Keywords:

Composite risk scoring, dengue hemorrhagic fever, K-Means clustering, vulnerability mapping, Semarang municipality

Abstract

The rising incidence of dengue hemorrhagic fever (DHF) in Indonesian urban areas highlights the urgent need for analytical frameworks capable of capturing spatial heterogeneity in vulnerability while supporting targeted public health interventions. However, most existing dengue vulnerability studies rely on clustering or indicator-based scoring in isolation, limiting interpretability and reducing their operational relevance for policy-driven decision making. This study explicitly addresses this gap by proposing an integrated spatial clustering and epidemiologically weighted composite risk scoring framework for urban dengue vulnerability mapping. Using Semarang Municipality as a case study, K Means based spatial clustering was combined with composite risk scoring to analyze dengue vulnerability across administrative subdistricts. Seven key indicators consisting of population density, area size, total population, morbidity, mortality, incidence rate, and health facility availability were processed through systematic imputation, normalization, and attribute selection to ensure data consistency and analytical robustness. The optimal number of clusters was determined using the Elbow Method and Silhouette Score, after which K-Means clustering was applied to generate spatially coherent vulnerability groupings. A composite risk scoring mechanism was subsequently employed to classify regions into five operational risk categories: Low-Risk, Moderate-Risk, High-Risk, Very High-Risk, and Emergency-Priority. The results reveal clear structural differentiation in dengue vulnerability patterns, where Emergency-Priority and Very High-Risk clusters are not only characterized by elevated epidemiological indicators but also by constrained health service availability, amplifying outbreak susceptibility. Specifically, 13 subdistricts (7.5%) were identified as Emergency-Priority and 22 subdistricts (12.4%) as Very High-Risk, together accounting for approximately 20% of the study area. Beyond numerical classification, the integration of spatial clustering and composite risk scoring enhances interpretability by linking cluster structure with epidemiological severity and service capacity, thereby improving policy relevance compared to conventional clustering-only approaches. Validation through heatmap visualization, risk category distribution, and cluster ranking confirms the stability and interpretive clarity of the proposed framework. By moving beyond descriptive clustering toward an integrated analytical model, this study contributes a scalable and adaptive decision-support framework for dengue risk mapping. The findings provide actionable insights for policymakers, enabling evidence-based prioritization, optimized resource allocation, and the development of responsive intervention strategies to mitigate dengue burden in complex urban environments.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Abdullah, N. A. M. H., Dom, N. C., Salleh, S. A., Dapari, R., & Precha, N. (2025). Dengue’s climate conundrum: how vegetation and temperature shape mosquito populations and disease outbreaks. BMC Public Health, 25(1). https://doi.org/10.1186/s12889-024-21105-4

Agusrawati, A., Fithria, F., Wibawa, G. N. A., Ruslan, R., Hadini, H., Baharuddin, B., Yahya, I., & Abapihi, B. (2023). Spatial Analysis on the Spread of Dengue Hemorrhagic Fever in Baubau, Southeast Sulawesi, Indonesia. International Journal of Science, Technology, Engineering and Mathematics, 3(4), 51–72. https://doi.org/10.53378/353033

Araujo, E. C., Codeço, C. T., Loch, S., Vacaro, L. B., Freitas, L. P., Lana, R. M., Bastos, L. S., de Almeida, I. F., Valente, F., Carvalho, L. M., & Coelho, F. C. (2024). Large-scale Epidemiological modeling: Scanning for Mosquito-Borne Diseases Spatio-temporal Patterns in Brazil. http://arxiv.org/abs/2407.21286

Auditiyah, C. (2024). Pengelompokkan Daerah Rawan Demam Berdarah (DBD) di Jawa Timur Menggunakan Metode K-Means. ESTIMASI: Journal of Statistics and Its Application, 205–215. https://doi.org/10.20956/ejsa.v5i2.27091

Baligodugula, V. V., & Amsaad, F. (2025). Unsupervised Learning: Comparative Analysis of Clustering Techniques on High-Dimensional Data. http://arxiv.org/abs/2503.23215

BPS Kota Semarang, B. P. S. (n.d.). Badan Pusat Statistik Kota Semarang. Badan Pusat Statistik Kota Semarang. Retrieved December 23, 2025, from https://semarangkota.bps.go.id

Deng, S. Z., Liu, X. Y., Su, J. J., Xiang, L. H., Chang, L. T., Zhu, J. J., & Zhang, H. L. (2025). Epidemiological and cluster characteristics of dengue fever in Yunnan Province, Southwestern China, 2013–2023. BMC Infectious Diseases, 25(1). https://doi.org/10.1186/s12879-024-10403-2

Dwi, S., Ningsih, O., Fibriana, A. I., Masyarakat, I. K., Keolahragaan, I., & Semarang, U. N. (n.d.). Ecological Study: Correlation Of Rainfall with Dengue Hemorrhagic Fever Using Time Series Analysis nd Gis in Semarang City (2017-2021).

Gurram, M. K., Gwee, S., Wang, Y. C., & Pang, J. (2025). Spatiotemporal distribution of sustained dengue hotspots associated with climate and urbanisation in Singapore. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-07296-9

Hoque, M. A. A., Sardar, M. L., Mukul, S. A., & Pradhan, B. (2025). Mapping dengue susceptibility in Dhaka city: a geospatial multi-criteria approach integrating environmental and demographic factors. Spatial Information Research, 33(4). https://doi.org/10.1007/s41324-025-00635-y

Indonesia, T. K. (2025). Indonesia dan WHO Memperkuat Upaya Melawan Dengue dengan Inovasi Surveilans. https://www.who.int/indonesia/id/news/detail/16-05-2025-indonesia-and-who-ramp-up-dengue-fight-with-smarter-surveillance

Mamenun, Koesmaryono, Y., Sopaheluwakan, A., Hidayati, R., Dasanto, B. D., & Aryati, R. (2024). Spatiotemporal Characterization of Dengue Incidence and Its Correlation to Climate Parameters in Indonesia. Insects, 15(5), 366. https://doi.org/10.3390/insects15050366

Leandro, A. S., Chiba de Castro, W. A., Garey, M. V., & Maciel-de-Freitas, R. (2024). Spatial analysis of dengue transmission in an endemic city in Brazil reveals high spatial structuring on local dengue transmission dynamics. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-59537-y

Lestari, T. R. P. (2025). Maintaining National Commitment to Dengue Control Towards Zero Deaths by 2030. Commision IX Health, Manpower, and Social Security, XVII (11), 1–5.

Li, J. J., Zhou, H. J., Bickel, P. J., & Tong, X. (2024). Dissecting Gene Expression Heterogeneity: Generalized Pearson Correlation Squares and the K -Lines Clustering Algorithm. Journal of the American Statistical Association, 119(548), 2450–2463. https://doi.org/10.1080/01621459.2024.2342639

Lin, C.-H., Wen, T.-H., Lin, C.-H., & Wen, T.-H. (2022). How Spatial Epidemiology Helps Understand Infectious Human Disease Transmission. Tropical Medicine and Infectious Disease, 7(8). https://doi.org/10.3390/tropicalmed7080164

Listyono, G. M., Oinike, A., & Hambali, D. (2025). Uncovering the spatial link between environmental risks, diarrhea incidence, and health service accessibility. Environmental and Materials, 3(1). https://doi.org/10.61511/eam.v3i1.2025.1946

Magalhães, A. R., Codeço, C. T., Svenning, J.-C., Escobar, L. E., Van De Vuurst, P., & Gonçalves-Souza, T. (2023). Neglected tropical diseases risk correlates with poverty and early ecosystem destruction. Infectious Diseases of Poverty, 12(1), 32. https://doi.org/10.1186/s40249-023-01084-1

Maramis, A., & Wispriyono, B. (n.d.). Vulnerability Mapping of Dengue Hemorrhagic Fever (DHF) Cases in West Java Province in 2023. https://doi.org/10.37287/ijghr.v7i5.6720

Medina, J. R. C., Takeuchi, R., Mercado, C. E. G., de los Reyes, C. S., Cruz, R. V., Abrigo, M. D. R., Hernandez, P. M. R., Garcia, F. B., Salanguit, M., Gregorio, E. R., Kawamura, S., Hung, K. E., Kaneko, M., Nonaka, D., Maude, R. J., & Kobayashi, J. (2023). Spatial and temporal distribution of reported dengue cases and hot spot identification in Quezon City, Philippines, 2010–2017. Tropical Medicine and Health, 51(1). https://doi.org/10.1186/s41182-023-00523-x

Nurkhairiyyah, H. D., Zaidiah, A., & Irmanda, H. N. (2024). Analisis Daerah Potensi Persebaran Demam Berdarah Dengue di DKI Jakarta dengan Menggunakan Metode Clustering K-Means. JOINS (Journal of Information System), 9(1), 34–42. https://doi.org/10.33633/joins.v9i1.7050

NTD, WHE, W. T. (2024). Global strategic preparedness, readiness and response plan for dengue and other Aedes-borne arboviruses. https://www.who.int/publications/m/item/global-strategic-preparedness--readiness-and-response-plan-for-dengue-and-other-aedes-borne-arboviruses

Rahmah, A., Faoziatun Khusna, N., Sanmas, S. A., Aulia, S., Amaria, S., & Fauzi, F. (2025). Comparison Analysis of Hierarchical (Vol. 13).

Rahman, A. ur. (2022). Geo-Spatial Disease Clustering for Public Health Decision Making. Informatica, 46(6). https://doi.org/10.31449/inf.v46i6.3827

Salim, M. F., Satoto, T. B. T., & Danardono. (2025). Predicting spatio-temporal dynamics of dengue using INLA (integrated nested laplace approximation) in Yogyakarta, Indonesia. BMC Public Health, 25(1). https://doi.org/10.1186/s12889-025-22545-2

Sena, B. F., Herrera, B. B., Martins, D. B. G., & Lima Filho, J. L. (2025). Geospatial clustering reveals dengue hotspots across Brazilian municipalities, 2024. Frontiers in Public Health, 13. https://doi.org/10.3389/fpubh.2025.1620914

Shen, Y., Ren, Z., Fan, J., Xiao, J., Zhang, Y., & Liu, X. (2025). Fine-Scale Risk Mapping for Dengue Vector Using Spatial Downscaling in Intra-Urban Areas of Guangzhou, China. Insects, 16(7). https://doi.org/10.3390/insects16070661

Thi-Quynh Nguyen, & Thi-Hien Cao. (2023). GIS-based infectious disease mapping: A case study of hotspots of dengue virus in Ho Chi Minh City, Vietnam. World Journal of Biology Pharmacy and Health Sciences, 16(1), 239–247. https://doi.org/10.30574/wjbphs.2023.16.1.0455

Wongoutong, C. (2024). The impact of neglecting feature scaling in k-means clustering. PLoS ONE, 19(12). https://doi.org/10.1371/journal.pone.0310839

Downloads


Crossmark Updates

How to Cite

Alif, M. F. ., & Fahmi, A. (2026). An Integrated K-Means and Composite Risk Scoring Framework for Urban Dengue Vulnerability Mapping . Sinkron : Jurnal Dan Penelitian Teknik Informatika, 10(1), 638-651. https://doi.org/10.33395/sinkron.v10i1.15748