Classification of Stroke Opportunities with Neural Network and K-Nearest Neighbor Approaches

Authors

  • Nurul Afifah Arifuddin Univeristy Pembangunan Nasional Veteran Jakarta, Indonesia
  • I Wayan Rangga Pinastawa Univeristy Pembangunan Nasional Veteran Jakarta, Indonesia
  • Nurhajar Anugraha Polytechnic Sriwijaya
  • Musthofa Galih Pradana Univeristy Pembangunan Nasional Veteran Jakarta, Indonesia

DOI:

10.33395/sinkron.v8i2.12228

Keywords:

Classification, K-Nearest Neighbor, Multi-Layer Perceptron, Stroke

Abstract

Stroke is one of the deadly diseases. This is illustrated in stroke
deaths in Indonesia which reached a death rate of 131.8 cases. Some of the
things that cause a stroke to become a disease with the highest mortality rate
are related to transitions in human life in 4 aspects, namely epidemiology,
demography, technology, and economics, socio-culture. Of the many
influencing aspects, one of the transition points of human life in the
technological aspect can be an alternative solution and prevention. Aspects
of technology with the utilization of data can be used as a preventive measure
for stroke. One approach is to use data mining techniques, which can provide
an initial picture regarding the chances of getting a stroke so that it can be
used as an early warning for patients. With so many techniques in data
mining, this study used a classification or grouping approach using 2
algorithms, namely K-Nearest Neighbor and one of the Neural Network
groups, namely Multi-Layer Perceptron. This research will focus on finding
the accuracy and best results of the two algorithms in classifying. The final
result of this study is that the K-Nearest Neighbor algorithm has a better
accuracy of 95% compared to the Multi-Layer Perceptron which produces an
accuracy of 88%

GS Cited Analysis

Downloads

Download data is not yet available.

References

A.Vincent, J. P. J. F. (2022). Komparasi Tingkat Akurasi Random Forest Dan Knn Untuk Mendiagnosis Penyakit Kanker Payudara. Universitas Pelita Harapan PSDKU Medan Jurusan Sistem Informasi, 7(1), 49–61.

Arslan, H., & Arslan, H. (2021). A new COVID-19 detection method from human genome sequences using CpG island features and KNN classifier. Engineering Science and Technology, an International Journal, 24(4), 839–847. https://doi.org/10.1016/j.jestch.2020.12.026

Galih Pradana, M., Palilingan, K., Vanli Akay, Y., Puspasari Wijaya, D., & Hari Saputro, P. (2023). Comparison of Multi Layer Perceptron, Random Forest & Logistic Regression on Students Performance Test. 462–466. https://doi.org/10.1109/icimcis56303.2022.10017501

Kaharudin, Musthofa Galih Pradana, K. (2019). PREDIKSI CUSTOMER CHURN PERUSAHAAN TELEKOMUNIKASI MENGGUNAKAN NAÏVE BAYES DAN K-NEAREST NEIGHBOR. Informasi Interaktif, 4(3).

Khishe, M., Mosavi, M. R., & Moridi, A. (2018). Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation. Applied Acoustics, 137(July 2017), 121–139. https://doi.org/10.1016/j.apacoust.2018.03.012

Lai, Z., & Deng, H. (2018). Medical image classification based on deep features extracted by deep model and statistic feature fusion with multilayer perceptron. Computational Intelligence and Neuroscience, 2018. https://doi.org/10.1155/2018/2061516

Musthofa Galih Pradana, Azriel Christian Nurcahyo, P. H. S. (2020). PENGARUH SENTIMEN DI SOSIAL MEDIA DENGAN HARGA SAHAM PERUSAHAAN. Jurnal Ilmiah Edutic, 6(2).

Musthofa Galih Pradana, Bondan Wahyu Pamekas, K. (2018). PENYAKIT DIABETES MELLITUS MENGGUNAKAN METODE CERTAINTY FACTOR DESIGN EXPERT SYSTEM FOR DIAGNOSING DIABETES. CCIT Journal, 11(2), 182–191.

Putry, N. M. (2022). Komparasi Algoritma Knn Dan Naïve Bayes Untuk Klasifikasi Diagnosis Penyakit Diabetes Mellitus. EVOLUSI : Jurnal Sains Dan Manajemen, 10(1). https://doi.org/10.31294/evolusi.v10i1.12514

Qiao, W., Khishe, M., & Ravakhah, S. (2021). Underwater targets classification using local wavelet acoustic pattern and Multi-Layer Perceptron neural network optimized by modified Whale Optimization Algorithm. Ocean Engineering, 219(June 2020), 108415. https://doi.org/10.1016/j.oceaneng.2020.108415

Rachmatika, R., & Bisri, A. (2020). Perbandingan Model Klasifikasi untuk Evaluasi Kinerja Akademik Mahasiswa. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(3), 417. https://doi.org/10.26418/jp.v6i3.43097

Sanjaya, R., & Fitriyani, F. (2019). Prediksi Bedah Toraks Menggunakan Seleksi Fitur Forward Selection dan K-Nearest Neighbor. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(3), 316. https://doi.org/10.26418/jp.v5i3.35324

Savalia, S., & Emamian, V. (2018). Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks. Bioengineering, 5(2). https://doi.org/10.3390/bioengineering5020035

T. Adithiyaaa, D. Chandramohan, T. S. (2020). Optimal prediction of process parameters by GWO-KNN in stirring- squeeze casting of AA2219 reinforced metal matrix composites. Materials Today: Proceedings, 20, 329–334. https://doi.org/10.1016/j.matpr.2019.10.051

Uddin, S., Haque, I., Lu, H., Moni, M. A., & Gide, E. (2022). Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Scientific Reports, 12(1), 1–11. https://doi.org/10.1038/s41598-022-10358-x

Downloads


Crossmark Updates

How to Cite

Arifuddin, N. A., Pinastawa, I. W. R. ., Anugraha, . N. ., & Pradana, M. G. . (2023). Classification of Stroke Opportunities with Neural Network and K-Nearest Neighbor Approaches. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(2), 688-693. https://doi.org/10.33395/sinkron.v8i2.12228