A CNN Model for ODOL Truck Detection

Authors

  • Nurul Afifah Arifuddin Universitas Pembangunan Nasional veteran Jakarta, Indonesia
  • Kharisma Wiati Gusti Universitas Pembangunan Nasional veteran Jakarta, Indonesia
  • Rifka Dwi Amalia Universitas Pembangunan Nasional veteran Jakarta, Indonesia

DOI:

10.33395/sinkron.v8i3.13780

Keywords:

CNN, Odol, Truck, Non-Odol,Artificial Intelligence

Abstract

This study developed a Convolutional Neural Network (CNN) model as one of artificial intelligence method to detect trucks experiencing over-dimension and over-loading (ODOL). The primary goal of this research is to enhance the efficiency of truck monitoring, reduce road infrastructure damage, and support the sustainability of transportation using artificial intelligence approaches. The model was trained using a dataset consisting of ODOL and non-ODOL truck images, and successfully achieved a testing accuracy of 94.23%. The confusion matrix analysis demonstrated the model's ability to classify trucks with high precision.  Additional testing on truck images not included in the training or testing dataset showed the model's potential for good generalization.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Alsanad, H. R., Ucan, O. N., Ilyas, M., Khan, A. U. R., & Bayat, O. (2020). Real-Time Fuel Truck Detection Algorithm Based on Deep Convolutional Neural Network. IEEE Access, 8, 118808–118817. https://doi.org/10.1109/ACCESS.2020.3005391

Antono, L. (2022). IMPLEMENTASI KEBIJAKAN ODOL DALAM UPAYA MENINGKATKAN SISTEM PENGAWASAN DAN PENGENDALIAN MUATAN ANGKUTAN BARANG. 1(11).

Gernale, A. C. C., & Juanico, D. E. O. (n.d.). Classification and Prediction of Overloaded Trucks Passing the Southbound Lane of North-Luzon Expressway Using Artificial Neural Network. 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT). https://doi.org/10.1109/CoDIT58514.2023.10284146

Hafifah, F., Rahman, S., & Asih, M. S. (2021). Klasifikasi Jenis Kendaraan Pada Jalan Raya Menggunakan Metode Convolutional Neural Networks (CNN). 2(5).

He, P., Wu, A., Huang, X., Scott, J., Rangarajan, A., & Ranka, S. (2021). Truck and Trailer Classification With Deep Learning Based Geometric Features. IEEE Transactions on Intelligent Transportation Systems, 22(12), 7782–7791. https://doi.org/10.1109/TITS.2020.3009254

Huang, K. (n.d.). Image Classification Using the Method of Convolutional Neural Networks. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). https://doi.org/10.1109/TOCS56154.2022.10016070

K, D., R, M., B, D., U, S. V. K., K, A., & A, B. (n.d.). Automatic Vehicle Overload Detection and Ignition Control System. 2023 8th International Conference on Communication and Electronics Systems (ICCES). https://doi.org/10.1109/ICCES57224.2023.10192705

KNKT - KNKT : ANGKUTAN ODOL SALAH SATU POTENSI BAHAYA DI ANGKUTAN PENYEBERANGAN. (n.d.). Retrieved June 28, 2024, from https://www.knkt.go.id/news/read/knkt-%3A-angkutan-odol-salah-satu-potensi-bahaya-di-angkutan-penyeberangan

kominfo. (n.d.). Sosialisasi Truk Over Dimension Overload (ODOL) | PEMERINTAH KABUPATEN KEPAHIANG. Retrieved January 19, 2024, from https://kepahiangkab.go.id/new/2023/03/15/sosialisasi-truk-over-dimension-overload-odol/

Mo, X., Sun, C., Li, D., Huang, S., & Hu, T. (2020). Research on the Method of Determining Highway Truck Load Limit Based on Image Processing. IEEE Access, 8, 205477–205486. https://doi.org/10.1109/ACCESS.2020.3037195

PP No. 55 Tahun 2012. (n.d.). Database Peraturan | JDIH BPK. Retrieved January 19, 2024, from http://peraturan.bpk.go.id/Details/5268/pp-no-55-tahun-2012

Praveena, K. S., Prajwal, M., Bhargavi, K., & Dharsan, M. R. (n.d.). An Automatic Overloaded Vehicle Monitoring and Prevention System using IoT. 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT). https://doi.org/10.1109/RTEICT52294.2021.9573892

Saad, F. A. M., Ishak, S. Z., Sulaiman, S. A. H., & Awang, A. (n.d.). The Implication of Overloaded Truck to Developing Countries – A Review. 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC). https://doi.org/10.1109/ICSGRC53186.2021.9515215

Tan, Y., Xu, Y., Das, S., & Chaudhry, A. (2018). Vehicle Detection and Classification in Aerial Imagery. 2018 25th IEEE International Conference on Image Processing (ICIP), 86–90. https://doi.org/10.1109/ICIP.2018.8451709

Thangavel, K. D., Palaniappan, S., Chandrasekar, G., & Muthusamy, C. (n.d.). Analysis of Overloading in Trucks using Embedded Controller. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). https://doi.org/10.1109/ICESC48915.2020.9155760

Vázquez, M., Cikel, K., Arzamendia, M., Gregor, D., & Villagra, M. (2020). Cargo Vehicle Classification System Through Axle Detection. 2020 IEEE Congreso Bienal de Argentina (ARGENCON), 1–6. https://doi.org/10.1109/ARGENCON49523.2020.9505351

Downloads


Crossmark Updates

How to Cite

Arifuddin, N. A., Gusti, K. W. ., & Amalia, R. D. . (2024). A CNN Model for ODOL Truck Detection. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 1697-1705. https://doi.org/10.33395/sinkron.v8i3.13780