Ranking Universities in Medan Using WoE and IV in Weighting of MAUT
DOI:
10.33395/sinkron.v8i2.12532Keywords:
Decision support system, information value, multi attribute utility theory, ranking university, weight of evidenceAbstract
Throughout Indonesia, including Medan, the popularity of a university can be specified by the ranking of a university. There are five assessment components which important for ranking universities under the Ministry of Education, Culture, Research, Technology and Higher Education, such as the Quality of Human Resources, Institutional Quality, Quality of Student Activities, Quality of Research and Community Service, and Quality of Innovation. Multi Attribute Utility Theory (MAUT) is one of the decision support system (DSS) methods that can be used to calculate campus rankings. However, the researcher were determining the weight of MAUT method based on their preferences and it was subjective. Weight of Evidence (WoE) can be used to assign a numerical score to each category of independent variables that describes the strength of its relationship to the target variable. In selecting the independent variable that is most informative and relevant in predicting the target variable, Information Value (IV) can be used. Based on the results, college B is the most popular university out of ten universities in Medan, with the highest evaluation value 0.796296296 using MAUT method and 0.923794719 using MAUT method with WoE & IV. The last position is J college with the lowest evaluation value 0.1666666667 for MAUT method and 0.02540176 for MAUT method with WoE & IV. The weighting of MAUT method with WoE and IV produces more optimal evaluation value than the the original MAUT method.
Downloads
References
Batar, A. K., & Watanabe, T. (2021). Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian himalayan region: Recent developments, gaps, and future directions. ISPRS International Journal of Geo-Information, 10(3). https://doi.org/10.3390/ijgi10030114
Borgonovo, E., Hazen, G. B., Jose, V. R. R., & Plischke, E. (2021). Probabilistic sensitivity measures as information value. European Journal of Operational Research, 289(2), 595–610. https://doi.org/10.1016/j.ejor.2020.07.010
Farhana, N. A., Perdana, A., & Fadilah, P. M. (2022). PEMERINGKATAN PERGURUAN TINGGI DI KOTA MEDAN MENGGUNAKAN MAJORITY VOTE DALAM PENENTUAN PEMBOBOTAN MULTI-ATTRIBUTE UTILITY THEORY ( MAUT ). DSI (Deli Sains Informatika), 2(1), 1–7.
Gupta, V., Kumar, S., Kaur, R., & Tandon, R. S. (2022). Regional-scale landslide susceptibility assessment for the hilly state of Uttarakhand, NW Himalaya, India. Journal of Earth System Science, 131(1). https://doi.org/10.1007/s12040-021-01746-4
Hadinata, N. (2018). Implementasi Metode Multi Attribute Utility Theory (MAUT) Pada Sistem Pendukung Keputusan dalam Menentukan Penerima Kredit. Jurnal SISFOKOM, 07(September), 87–92.
Kemenristekdikti. (2018). Kemenristekdikti Umumkan Peringkat 100 Besar Perguruan Tinggi Indonesia Non Vokasi Tahun 2018. Retrieved February 12, 2019, from Kemenristekdikti website: https://ristekdikti.go.id/kabar/kemenristekdikti -umumkan-peringkat-100-besar-perguruan- tinggi-indonesia-non-vokasi-tahun-2018/
Lestari, Y. D., & Mardiana, M. (2020). Decision Support System For Determining the Best College High Private Using Topsis Method. SinkrOn : Jurnal Dan Penelitian Teknik Informatika, 4(2), 27–33.
Lund, B. (2021). Weight of Evidence, Dummy Variables, and Degrees Of Freedom. SAS Global Forum 2021, (L), 1–18.
Parsai, T., & Kumar, A. (2021). Weight-of-evidence process for assessing human health risk of mixture of metal oxide nanoparticles and corresponding ions in aquatic matrices. Chemosphere, 263, 128289. https://doi.org/10.1016/j.chemosphere.2020.128289
Perdana, A., & Budiman, A. (2020). Analysis of Multi-attribute Utility Theory for College Ranking Decision Making. SinkrOn : Jurnal Dan Penelitian Teknik Informatika, 4(2), 19–26.
Perdana, A., & Budiman, A. (2021). College Ranking Analysis Using VIKOR Method. Journal of Computer Networks, Architecture and High Permformance Computing, 3(2), 241–248.
Perdana, A., & Farhana, N. A. (2022). PENERAPAN MAJORITY VOTE METHOD DALAM PENENTUAN PEMBOBOTAN PADA METODE WEIGHTED PRODUCT ( WP ) PADA PEMERINGKATAN KAMPUS DI KOTA MEDAN. DSI (Deli Sains Informatika), 2(1).
Verma, P. (2020). Churn prediction for savings bank customers: A machine learning approach. Journal of Statistics Applications and Probability, 9(3), 535–547. https://doi.org/10.18576/JSAP/090310
Wang, W., Lesner, C., Ran, A., Rukonic, M., Xue, J., & Shiu, E. (2020). Using small business banking data for explainable credit risk scoring. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, 13396–13401. https://doi.org/10.1609/aaai.v34i08.7055
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2023 Putri Maulidina Fadilah, Adidtya Perdana, Nurul Ain Farhana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.