Chicken Disease Classification Based on Inception V3 Algorithm for Data Imbalance

Authors

  • Muhammad Salimy Ahsan Universitas AMIKOM Yogyakarta
  • Kusrini Universitas AMIKOM Yogyakarta
  • Dhani Ariatmanto Universitas AMIKOM Yogyakarta

DOI:

10.33395/sinkron.v8i3.12737

Keywords:

Data Imbalance, Oversampling, Chicken Disease, Classification, Inception V3

Abstract

In order to supply the world's protein needs, one of the most crucial industries is the poultry business. The problem that often occurs in chicken farms is disease, and this can have a significant impact on the farm. The availability of large enough amounts of data makes it possible to carry out the process of monitoring chicken diseases using deep learning technology for the classification of chicken diseases. With the availability of large enough data, the dataset has a variety of features that cause problems with data clutter. To overcome the problem of data conflict, an oversampling technique is used to increase the sample data from the minority class so that it has the same value as the other majority classes, and the Inception-V3 algorithm is used to classify chicken diseases based on fecal images. The total number of data used was 8067, which were broken down into the following four categories: Healthy, Salmonella, Coccidiosis, and Newcastle disease. Data balancing was done using oversampling to get the total data to 10500 before the evaluation process was started. The data was distributed by splitting it by 80% of the data will be used for training, 10% for data validation, and 10% for testing. The results of the test, which employed Inception V3 without oversampling, produced the highest possible score of 94.05%.

GS Cited Analysis

Downloads

Download data is not yet available.

Author Biography

Muhammad Salimy Ahsan, Universitas AMIKOM Yogyakarta

 

 

References

Asfaw, Y., Ameni, G., Medhin, G., Alemayehu, G., & Wieland, B. (2019). Infectious and parasitic diseases of poultry in Ethiopia: a systematic review and meta-analysis. Poultry Science, 98(12). https://doi.org/10.3382/ps/pez521

Astill, J., Dara, R. A., Fraser, E. D. G., & Sharif, S. (2018). Detecting and Predicting Emerging Disease in Poultry With the Implementation of New Technologies and Big Data: A Focus on Avian Influenza Virus. Frontiers in Veterinary Science, 5. https://doi.org/10.3389/fvets.2018.00263

Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.652801

Hadi Nasyuha, A. (2020). JURNAL MEDIA INFORMATIKA BUDIDARMA Implementasi Teorema Bayes Dalam Diagnosa Penyakit Ayam Broiler. 4, 1062–1068. https://doi.org/10.30865/mib.v4i4.2366

He, H., Zhang, W., & Zhang, S. (2018). A novel ensemble method for credit scoring: Adaption of different imbalance ratios. Expert Systems with Applications, 98, 105–117. https://doi.org/https://doi.org/10.1016/j.eswa.2018.01.012

Kaope, C., & Pristyanto, Y. (2023). The Effect of Class Imbalance Handling on Datasets Toward Classification Algorithm Performance. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 22(2). https://doi.org/https://doi.org/10.30812/matrik.v22i2.2515

Liz, H., Huertas-Tato, J., Sánchez-Montañés, M., Del Ser, J., & Camacho, D. (2023). Deep learning for understanding multilabel imbalanced Chest X-ray datasets. Future Generation Computer Systems, 144, 291–306. https://doi.org/https://doi.org/10.1016/j.future.2023.03.005

Machuve, D., Nwankwo, E., Lyimo, E., Maguo, E., & Munisi, C. (2021). Machine Learning Dataset for Poultry Diseases Diagnostics - PCR annotated. Zenodo. https://doi.org/10.5281/zenodo.5801834

Nuvey, F. S., Fink, G., Hattendorf, J., Mensah, G. I., Addo, K. K., Bonfoh, B., & Zinsstag, J. (2023). Access to vaccination services for priority ruminant livestock diseases in Ghana: Barriers and determinants of service utilization by farmers. Preventive Veterinary Medicine, 215, 105919. https://doi.org/https://doi.org/10.1016/j.prevetmed.2023.105919

Primartha, R. (2021). Algoritma Machine Learning. INFORMATIKA.

Qiang, Y., & Xindong, W. (2006). 10 Challenging problems in data mining research. International Journal of Information Technology and Decision Making, 5(4). https://doi.org/10.1142/S0219622006002258

Ramadhanti, N. S., Kusuma, W. A., & Annisa, A. (2020). Optimasi Data Tidak Seimbang pada Interaksi Drug Target dengan Sampling dan Ensemble Support Vector Machine. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6). https://doi.org/10.25126/jtiik.2020762857

Setiadi, A., Santoso, S. I., Nurfadillah, S., Prayoga, K., & Prasetyo, E. (2020). Production and Marketing System of Kampong Chicken in Batang Regency, Central Java, Indonesia. Caraka Tani: Journal of Sustainable Agriculture, 35(2), 326. https://doi.org/10.20961/carakatani.v35i2.40907

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–2826. https://doi.org/10.1109/CVPR.2016.308

Ustyannie, W., & Suprapto, S. (2020). OVERSAMPLING METHOD TO HANDLING IMBALANCED DATASETS PROBLEM IN BINARY LOGISTIC REGRESSION ALGORITHM. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 14(1). https://doi.org/10.22146/ijccs.37415

Van Limbergen, T., Sarrazin, S., Chantziaras, I., Dewulf, J., Ducatelle, R., Kyriazakis, I., McMullin, P., Méndez, J., Niemi, J. K., Papasolomontos, S., Szeleszczuk, P., Van Erum, J., Maes, D., & consortium, on behalf of the P. (2020). Risk factors for poor health and performance in European broiler production systems. BMC Veterinary Research, 16(1), 287. https://doi.org/10.1186/s12917-020-02484-3

Downloads


Crossmark Updates

How to Cite

Ahsan, M. S. ., Kusrini, & Dhani Ariatmanto. (2023). Chicken Disease Classification Based on Inception V3 Algorithm for Data Imbalance. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 7(3), 1875-1882. https://doi.org/10.33395/sinkron.v8i3.12737