GridSearch and Data Splitting for Effectiveness Heart Disease Classification

Authors

  • Rusyda Tsaniya Eka Putri Dian Nuswantoro University
  • Junta Zeniarja Dian Nuswantoro University
  • Sri Winarno Dian Nuswantoro University
  • Ailsa Nurina Cahyani Dian Nuswantoro University
  • Ahmad Alaik Maulani Dian Nuswantoro University

DOI:

10.33395/sinkron.v9i1.13198

Keywords:

Effectivity; Grid Search; Heart Disease Classification; Machine Learning Algorithms; Splitting-Data

Abstract

Cardiovascular disease (CVD) is a major global health issue that affects death rates significantly. This research aims to improve the early detection and diagnosis of cardiovascular illness by utilizing machine learning methods, particularly classification algorithms. According to estimates from the World Health Organization (WHO), cardiovascular disease (CVD) caused 17.9 million deaths globally in 2019, or 32% of all fatalities. The treatment and prognosis of cardiovascular illness are greatly improved by early detection and diagnosis. Classification, in particular, machine learning, has become a prominent tool for solving problems connected to heart disease. The main objective of this project is to assess how well Grid Search and various data-sharing methods classify cardiac disease. SVM, Random Forest Classifier, Logistic Regression, Naïve Bayes, Decision Tree Classifier, KNN, and XGBoost Classifier are just a few machine learning methods. The UCI heart disease dataset, which contains information from 303 heart disease patients and 165 healthy participants, is used for the evaluation. Performance parameters like recall, accuracy, precision, and F1 score are considered to evaluate the algorithms' efficacy. The investigation's expected outcomes are intended to increase doctors' ability to diagnose cardiac disease more accurately. Moreover, these results may aid in creating more complex classification models for diagnosing cardiac conditions.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ahmad, A. A., & Polat, H. (2023). Prediction of Heart Disease Based on Machine Learning Using Jellyfish Optimization Algorithm. Diagnostics, 13(14), 2392. https://doi.org/10.3390/diagnostics13142392

Ahmad, G. N., Fatima, H., Shafiullah, Salah Saidi, A., & Imdadullah. (2022). Efficient Medical Diagnosis of Human Heart Diseases Using Machine Learning Techniques with and Without GridSearchCV. IEEE Access, 10, 80151–80173. https://doi.org/10.1109/ACCESS.2022.3165792

Apriyanto Alhamad, A. I. S. A. , B. S. , S. T. (2019). Prediksi Penyakit Jantung Menggunakan Metode-Metode Machine Learning Berbasis Ensemble – Weighted Vote. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 5(3), 352–360.

Asif, D., Bibi, M., Arif, M. S., & Mukheimer, A. (2023). Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization. Algorithms, 16(6). https://doi.org/10.3390/a16060308

Ayon, S. I., Islam, M. M., & Hossain, M. R. (2022). Coronary Artery Heart Disease Prediction: A Comparative Study of Computational Intelligence Techniques. IETE Journal of Research, 68(4), 2488–2507. https://doi.org/10.1080/03772063.2020.1713916

Bays, H. E., Kulkarni, A., German, C., Satish, P., Iluyomade, A., Dudum, R., Thakkar, A., Rifai, M. Al, Mehta, A., Thobani, A., Al-Saiegh, Y., Nelson, A. J., Sheth, S., & Toth, P. P. (2022). Ten things to know about ten cardiovascular disease risk factors – 2022. In American Journal of Preventive Cardiology (Vol. 10). Elsevier B.V. https://doi.org/10.1016/j.ajpc.2022.100342

Bhatt, C. M., Patel, P., Ghetia, T., & Mazzeo, P. L. (2023). Effective Heart Disease Prediction Using Machine Learning Techniques. Algorithms, 16(2). https://doi.org/10.3390/a16020088

Biswas, N., Ali, M. M., Rahaman, M. A., Islam, M., Mia, M. R., Azam, S., Ahmed, K., Bui, F. M., Al-Zahrani, F. A., & Moni, M. A. (2023). Machine Learning-Based Model to Predict Heart Disease in Early Stage Employing Different Feature Selection Techniques. BioMed Research International, 2023. https://doi.org/10.1155/2023/6864343

Chandrasekhar, N., & Peddakrishna, S. (2023). Enhancing Heart Disease Prediction Accuracy through Machine Learning Techniques and Optimization. Processes, 11(4). https://doi.org/10.3390/pr11041210

Chauhan, N. K., & Singh, K. (2022). Performance Assessment of Machine Learning Classifiers Using Selective Feature Approaches for Cervical Cancer Detection. Wireless Personal Communications, 124(3), 2335–2366. https://doi.org/10.1007/s11277-022-09467-7

Dissanayake, K., & Johar, M. G. M. (2021). Comparative study on heart disease prediction using feature selection techniques on classification algorithms. Applied Computational Intelligence and Soft Computing, 2021. https://doi.org/10.1155/2021/5581806

Elreedy, D., & Atiya, A. F. (2019). A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance. Information Sciences, 505, 32–64. https://doi.org/10.1016/j.ins.2019.07.070

Hagan, R., Gillan, C. J., & Mallett, F. (2021). Comparison of machine learning methods for the classification of cardiovascular disease. Informatics in Medicine Unlocked, 24, 100606. https://doi.org/10.1016/j.imu.2021.100606

Handayani, F., Sari Kusuma, K., Leoni Asbudi, H., Guines Purnasiwi, R., Kusuma, R., Sunyoto, A., & Mega Pradnya, W. (2021). Komparasi Support Vector Machine, Logistic Regression Dan Artificial Neural Network dalam Prediksi Penyakit Jantung. JEPIN (Jurnal Edukasi Dan Penelitian Informatika) , 7(3), 329–334.

Janosi, A. S. W. P. M. & D. R. (1988). Heart Disease. In UCI Machine Learning Repository. https://archive.ics.uci.edu/dataset/45/heart+disease

Louridi, N., Douzi, S., & El Ouahidi, B. (2021). Machine learning-based identification of patients with a cardiovascular defect. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00524-9

Pamungkas, F. S., Prasetya, B. D., & Kharisudin, I. (2019). Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python. PRISMA, Prosiding Seminar Nasional Matematika, 3, 689–694. https://journal.unnes.ac.id/sju/index.php/prisma/

Prabu, S., Thiyaneswaran, B., Sujatha, M., Nalini, C., & Rajkumar, S. (2022). Grid Search for Predicting Coronary Heart Disease by Tuning Hyper-Parameters. Computer Systems Science and Engineering, 43(2), 737–749. https://doi.org/10.32604/csse.2022.022739

Shi, Y., Zhang, H., Huang, S., Yin, L., Wang, F., Luo, P., & Huang, H. (2022). Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. In Signal Transduction and Targeted Therapy (Vol. 7, Issue 1). Springer Nature. https://doi.org/10.1038/s41392-022-01055-2

Taranto-Vera, G., Galindo-Villardón, P., Merchán-Sánchez-Jara, J., Salazar-Pozo, J., Moreno-Salazar, A., & Salazar-Villalva, V. (2021). Algorithms and software for data mining and machine learning: a critical comparative view from a systematic review of the literature. Journal of Supercomputing, 77(10), 11481–11513. https://doi.org/10.1007/s11227-021-03708-5

Tougui, I., Jilbab, A., & Mhamdi, J. El. (2020). Heart disease classification using data mining tools and machine learning techniques. Health and Technology, 10, 1137–1144. https://doi.org/10.1007/s12553-020-00438-1/Published

Xu, J., Zhang, Y., & Miao, D. (2020). Three-way confusion matrix for classification: A measure driven view. Information Sciences, 507, 772–794. https://doi.org/10.1016/j.ins.2019.06.064

Downloads


Crossmark Updates

How to Cite

Putri, R. T. E. ., Junta Zeniarja, Sri Winarno, Ailsa Nurina Cahyani, & Ahmad Alaik Maulani. (2024). GridSearch and Data Splitting for Effectiveness Heart Disease Classification. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 317-331. https://doi.org/10.33395/sinkron.v9i1.13198