Implementing Moving Average Forecasting System for Apparel Sales: Predicting Inventory Needs with Enhanced Accuracy
DOI:
10.33395/sinkron.v8i3.13686Keywords:
Forecasting System, Inventory, Moving AverageAbstract
Forecasting the supply of goods is one of the company's planning strategies to increase sales. However, there are several obstacles in forecasting the supply of goods in one of the boutiques in Jember Regency such as manual sales data collection, namely by recording clothing sales data in the sales book. So that there can be errors in predicting the supply of goods in the future. The purpose of this study is to apply a clothing sales forecasting system using the moving average method to forecast the supply of goods. This study applies the waterfall model to build a system with stages of analysis, design, implementation and testing. Analysis will be carried out by collecting data related to system requirements through observation, interviews and literature studies. While at the design stage there are usecase diagrams and system flow diagrams. Furthermore, the implementation stage was carried out in boutiques in Jember Regency by piloting the boutique owners. System testing uses black box testing to ensure there are no system functional errors. The findings show that the system in the form of a website can be run properly and can be accessed as long as there is an internet network. In addition, our system is already running well based on the results of black box testing. So that this system can be used by companies as forecasting considerations in providing inventory of goods.
Downloads
References
Arif, S. N., Zulkarnain, I., & Anwar, B. (2021). Analisis Pola Penjualan Pakaian Menggunakan Data Mining Dengan Algoritma Apriori. Syntax : Journal of Software Engineering, Computer Science and Information Technology, 2(1), 110–118. https://doi.org/10.46576/syntax.v2i1.1311
Asmi, R. N., & Rasal, I. (2023). Modul Customer Service pada Aplikasi Komputerisasi Standar Akuntansi Perbankan berbasis Website. Edumatic: Jurnal Pendidikan Informatika, 7(2), 247–256. https://doi.org/10.29408/edumatic.v7i2.21190
Asynari, E., Wahyudi, D., & Aeni, Q. (2020). Analisis Peramalan Permintaan Pada Geprek Bensu Menggunakan Metode Time Series. Jurnal Teknologi Dan Sistem Informasi, 6(3), 215–220.
Aulia Hanum, F., & Haryatmi, E. (2021). Implementasi Metode Moving Average Sebagai. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 829.
Bilaffayza, E. S., Wahyudin, W., & Herwanto, D. (2023). Forecasting Demand of Moving Average and Linier Regression Methods in Predicting the Production of K93 Disc Brake Product (Case Study of PT United Steel Center Indonesia). Jurnal Rekayasa Sistem & Industri (JRSI), 10(01), 32. https://doi.org/10.25124/jrsi.v10i01.590
Diniaty, D. (2020). Pengendalian Persediaan Barang Dagang Menggunakan Model Probabilistik (Studi Kasus: Toko XYZ) Merchandise Inventory Control Using Probabilistic Model (Case Study : XYZ Store). Jurnal Sains, Teknologi Dan Industri, 18(1), 87. https://doi.org/10.24014/sitekin.v18i1.9809
Haba, A. R. K., & Najamuddin, J. D. A. (2021). Penerapan Metode Moving Averange dalam Memprediksi Produksi Tomat. Jurnal Nasional CosPhi, 5(1), 33–36. https://www.cosphijournal.unisan.ac.id/index.php/cosphihome/article/view/121%0Ahttps://www.cosphijournal.unisan.ac.id/index.php/cosphihome/article/download/121/70
Hernando, W., & Diana. (2020). Analisis Dan Peramalan (Forecast) Dalam Penjualan Sepeda Motor Yamaha Pada Pt. Lautan Teduh. Bina Darma Conference on Computer Science, 325–336.
Idah, Y. M., Riyanto, A. D., & Ardini, D. N. E. (2019). Analisis Peramalan Penjualan Menggunakan Metode Moving Average pada Nabila Furniture Paguyangan Brebes. Analisis Peramalan Penjualan Menggunakan Metode Moving Average Pada Nabila Furniture Paguyangan Brebes, 133–138.
Kumila, A., Sholihah, B., Evizia, E., Safitri, N., & Fitri, S. (2019). Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan. JTAM | Jurnal Teori Dan Aplikasi Matematika, 3(1), 65. https://doi.org/10.31764/jtam.v3i1.764
Marzuki, K., Anggrawan, A., Wardhana, H., Rady Putra, L. G., & Rinaldi, C. W. (2023). Design of Field Rental System on Web-Based Garuda Mataram Badminton Club. Jurnal Teknik Informatika, 16(1), 58–68. https://doi.org/10.15408/jti.v16i1.27927
Nurhayati, S., & Syafiq, A. (2022). Jurnal Manajemen Informatika (JAMIKA) Sistem Prediksi Jumlah Produksi Baju Menggunakan Weighted Moving Average Clothing Production Amount Prediction System using Weighted Moving Average. Jamika (Jurnal Manajemen Informatika), 12(1), 14–24.
Nurlifa, A., & Kusumadewi, S. (2017). Sistem Peramalan Jumlah Penjualan Menggunakan Metode Moving Average Pada Rumah Jilbab Zaky. INOVTEK Polbeng - Seri Informatika, 2(1), 18. https://doi.org/10.35314/isi.v2i1.112
Putri, M. W., & Azizah, F. N. (2021). Perbandingan Metode Peramalan Moving Average, Single Exponential Smoothing, dan Trend Analysis pada Permintaan Produksi Art Board (Studi Kasus PT Pindo Deli Pulp and Paper Mills 1) Comparison of Moving Average, Single Exponential Smoothing, and Trend Anal. Jurnal Rekayasa Sistem Dan Industri, 8(02), 104–109. https://doi.org/10.25124/jrsi.v8i02.500
Ridwan, M., & Siregar, S. (2024). Information System Strategic Planning To Improve UINSU Medan Service Performance. Sinkron, 9(1), 20–31. https://doi.org/10.33395/sinkron.v9i1.13109
Sari, I. D., & Patrikha, F. D. (2021). Pengaruh e-gaya hidup, trend fashion, dan customer experience terhadap impulse buying produk fashion konsumen. Akuntabel, 18(4), 683–690. https://doi.org/10.30872/jakt.v18i4.9856
Satria, A., Ramadhani, F., & Sari, I. P. (2023). Rancang Bangun Sistem Informasi Penerimaan Peserta Didik Baru (PPDB) Sekolah Menengah Kejuruan Telkom 2 Medan Menggunakan Codeigniter. Wahana Jurnal Pengabdian Kepada Masyarakat, 2(1), 23–31. https://doi.org/10.56211/wahana.v2i1.285
Tri Anita, T., Putri Agustini Alkadri, S., Yuli Utami, P., Jenderal Ahmad Yani no, J., Pontianak, K., & Barat, K. (2023). Sistem Prediksi Penjualan Lidah Buaya Dengan Metode Single Exponential Smoothing Pada UPT Agribisnis. Jurnal Pendidikan Informatika Dan Sains, 12(1), 89–100. https://doi.org/10.31571/saintek.v12i1.5731
Yuniarti, T., Astuti, J., Rusmar, I., Widiana, I., Ciputra, F., & Bani, D. (2022). Komparasi Metode Regresi Linier , Exponential Smoothing dan ARIMA Pada Peramalan Volume Ekspor Minyak Kelapa Sawit di Indonesia. 3(1), 1–15.
Zaki Hasibuan, M. I., & Suendri, S. (2023). Implementasi Hybrid App Framework dalam Membangun Aplikasi Kesehatan Mental berbasis Mobile. Edumatic: Jurnal Pendidikan Informatika, 7(1), 141–150. https://doi.org/10.29408/edumatic.v7i1.17478
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2024 Ivfa Tut Tazkiyah, Ari Eko Wardoyo, Bagus Setya Rintyarna
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.