Study of Public Sentiment Towards Beauty Products Using A Machine Learning Approach: Random Forest Analysis On Social Media

Authors

  • Tresya Noviania Pasaribu Prima Indonesia University, Indonesia
  • Juliansyah Putra Tanjung Prima Indonesia University, Indonesia
  • Dosma Hutauruk Prima Indonesia University, Indonesia
  • Endang Sapriana Hutagalung Prima Indonesia University, Indonesia
  • Saputra Silitonga Prima Indonesia University, Indonesia

DOI:

10.33395/sinkron.v8i3.13969

Keywords:

Sentiment Analysis; Social Media Data; Beauty Products; Machine Learning; Random Forest

Abstract

In this digitalized era, the development of technology and the internet has brought significant changes in various aspects of life, including the way we shop. The trend of online shopping is increasingly prevalent and favored by the public, not least for cosmetic products. This research uses a quantitative approach to analyze public opinion or sentiment towards beauty products, especially beauty products. The data used in this research comes from online platforms. This research uses a beauty product dataset obtained from Kaggle. This research uses the Random Forest algorithm to analyze the data and produce findings, This algorithm is one of the advanced tools in Machine Learning that is focused on sorting data into the right categories, which in this context is used to classify public sentiment towards beauty products into categories such as positive, negative or neutral. Random Forest achieved a very high accuracy rate of 94.68% in the evaluation. However, it should be noted that the positive class has a low recall (25%) and a low F1-score (40%), indicating that the model may struggle to detect positive sentiment towards beauty products beauty products. In general, the model did well in classifying neutral and negative sentiments. Sentiment analysis shows that the majority of public sentiment towards beauty products is neutral, with a significant amount of negative and positive sentiment. It is evident that user opinions are informative or descriptive without conveying strong positive or negative emotions.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Ambika Hapsari, N., & Dwi Indriyanti, A. (2023). Analisis Sentimen pada Aplikasi Dompet Digital Menggunakan Algoritma Random Forest.

Arsi, P., & Waluyo, R. (2021). ANALISIS SENTIMEN WACANA PEMINDAHAN IBU KOTA INDONESIA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM). 8(1), 147–156. https://doi.org/10.25126/jtiik.202183944

Astuti, T., & Astuti, Y. (2022). Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization (PSO). JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(4), 1806. https://doi.org/10.30865/mib.v6i4.4119

Bayu Baskoro, B., Susanto, I., Khomsah, S., Informatika, P., Sains Data, P., Teknologi Telkom Purwokerto Jl Panjaitan, I. DI, & Tengah, J. (n.d.). Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR). 3(2), 21–029. https://doi.org/10.20895/INISTA.V3I2

Darwis, D., Siskawati, N., & Abidin, Z. (n.d.). Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional. 15(1).

Fadila Putri, N., Al Faraby, S., & Dwifebri, M. (n.d.). Analisis Sentimen pada Produk Kecantikan dari Ulasan Female Daily Menggunakan Information Gain dan SVM Classifier.

Farley Rafa Aurellia, Hanny Hafiar, & Priyatna, C. C. (2023). Analisis Media Monitoring terhadap Brand Kecantikan Hanasui pada Bulan Maret 2023. Jurnal Riset Public Relations, 149–160. https://doi.org/10.29313/jrpr.v3i2.3210

Machine, P., Joko, L., Nursiyono, A., Huda, Q., & Nursiyono, J. A. (n.d.). Analisis Sentimen Twitter Terhadap Perlindungan Data Pribadi dengan ANALISIS SENTIMEN TWITTER TERHADAP PERLINDUNGAN DATA PRIBADI DENGAN PENDEKATAN MACHINE LEARNING TWITTER SENTIMENT ANALYSIS OF PERSONAL DATA PROTECTION WITH MACHINE LEARNING APPROACH.

Pratiwi Wijayatun, Riszki. H. F. Sharfina. Dairoh. A. I. Dwi. A. R. Qirani. F. G. A. (2021). Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM). Journal of Informatics, Information System, Software Engineering and Applications, 1–7.

Putra, A. I., & Santika, R. R. (2020). Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering. Edumatic : Jurnal Pendidikan Informatika, 4(1), 121–130. https://doi.org/10.29408/edumatic.v4i1.2162

Sari1, D. N., Adelia2, F., Rosdiana3, F., Butar4, B. B., & Hariyanto5, M. (2020). ANALISA SENTIMEN TERHADAP REVIEW PRODUK KECANTIKAN MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER. In JIKA: Vol. ISSN.

Yulianti Prastika, E. S., Al Faraby, S., & Dwifebri, M. P. (2021). Analisis Sentimen pada Ulasan Produk Kecantikan Menggunakan K-Nearest Neighbor dan Information Gain (Vol. 8, Issue 5).

Downloads


Crossmark Updates

How to Cite

Tresya Noviania Pasaribu, Tanjung, J. P., Dosma Hutauruk, Endang Sapriana Hutagalung, & Saputra Silitonga. (2024). Study of Public Sentiment Towards Beauty Products Using A Machine Learning Approach: Random Forest Analysis On Social Media. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(3), 2088-2098. https://doi.org/10.33395/sinkron.v8i3.13969