Effectiveness of Bi-GRU and FastText in Sentiment Analysis of Shopee App Reviews
DOI:
10.33395/sinkron.v9i1.14474Keywords:
Bi-GRU, Cuckoo Search Algorithm, FastText, Sentiment Analysis, ShopeeAbstract
E-commerce is proof of evolution in the economic field due to its flexibility to shop for various necessities of life anytime and anywhere. Shopee is one of the e-commerce platforms in demand by people from varied circles in Indonesia. Multiple reviews are shed publicly by Shopee users on the Google Play Store regarding shopping experiences, which can be positive or negative. This condition affects the decision of other users to shop at Shopee, thus impacting the increase or decrease in profits from Shopee itself. Therefore, user sentiment analysis is needed as a form of effort to maintain user trust in Shopee. This research aims to build a system to classify the sentiment of Shopee application users through reviews in the Google Play Store by utilizing the Bidirectional Gated Recurrent Unit (Bi-GRU) deep learning model. The dataset contains 9,716 reviews, including 3,937 positive and 5,779 negative sentiments. Several test scenarios were conducted to achieve the highest peak of performance, utilizing TF-IDF feature extraction, FastText feature expansion, and optimization using the Cuckoo Search Algorithm. Additionally, SMOTE resampling was utilized to correct the dataset’s uneven distribution. The combined test scenarios mentioned significantly improved the accuracy by 1.03% and F1-Score by 1.04% from the baseline, with the highest accuracy reaching 90.48% and the highest F1-Score of 90.16%.
Downloads
References
Abasan, I. G. B. J., & Setiawan, E. B. (2024). Empowering hate speech detection: leveraging linguistic richness and deep learning. Bulletin of Electrical Engineering and Informatics, 13(2), 1371–1382. https://doi.org/10.11591/eei.v13i2.6938
Afdal, M., & Waroka, L. (2022). IJIRSE: Indonesian Journal of Informatic Research and Software Engineering Shopee Application Review Classification Using Probabilistic Neural Network Algorithm And K-Nearest Neighbor Klasifikasi Ulasan Aplikasi Shopee Menggunakan Algoritma Probabilistic Neural Network Dan K-Nearest Neighbor. IJIRSE: Indonesian Journal of Informatic Research and Software Engineering, 2(1), 49–58. https://doi.org/10.57152/ijirse.v2i1.216
Anggraeni, S. S., & Andryana, S. (2024). Enhancing Sentiment Analysis Accuracy In Delivery Services Through Synthetic Minority Oversampling Technique. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 9(2), 257–262. https://doi.org/10.33480/jitk.v9i2.5058
Civicioglu, P., & Besdok, E. (2013). A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 39(4), 315–346. https://doi.org/10.1007/s10462-011-9276-0
Dharma, E. M., Gaol, F. L., Warnars, H. L. H. S., & Soewito, B. (2022). The Accuracy Comparison Among Word2Vec, GloVe, and FastText Towards Convolutional Neural Network (CNN) Text Classification. Journal of Theoretical and Applied Information Technology, 100(2), 349–359. https://www.jatit.org/volumes/Vol100No2/5Vol100No2.pdf
Faadhilah, A. N., & Setiawan, E. B. (2024). Content-Based Filtering in Recommendation Systems Culinary Tourism Based on Twitter (X) Using Bidirectional Gated Recurrent Unit (Bi-GRU). Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 10(2), 406–418. https://doi.org/10.26555/jiteki.v10i2.29010
Fauzi, S., & Lina, L. F. (2021). Peran Foto Produk, Online Customer Review dan Online Customer Rating Pada Minat Beli Konsumen di E-Commerce. Jurnal Muhammadiyah Manajemen Bisnis, 2(1), 21. https://doi.org/10.24853/jmmb.2.1.151-156
Gochhait, D. S. (2024). Comparative Analysis of Machine and Deep Learning Techniques for Text Classification with Emphasis on Data Preprocessing. Qeios. https://doi.org/10.32388/xhc9j1
Jawad, K., Mahto, R., Das, A., Ahmed, S. U., Aziz, R. M., & Kumar, P. (2023). Novel Cuckoo Search-Based Metaheuristic Approach for Deep Learning Prediction of Depression. Applied Sciences (Switzerland), 13(9). https://doi.org/10.3390/app13095322
Limbong, J. J. A., Sembiring, I., & Hartomo, K. D. (2022). Analisis Klasifikasi Sentimen Ulasan pada E-Commerce Shopee Berbasis Word Cloud dengan Metode Naive Bayes dan K-Nearest Neighbor. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 9(2), 347–356. https://doi.org/10.25126/jtiik.202294960
Lubis, A. R., Nasution, M. K. M., Sitompul, O. S., & Zamzami, E. M. (2021). The effect of the TF-IDF algorithm in times series in forecasting word on social media. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 976–984. https://doi.org/10.11591/ijeecs.v22.i2.pp976-984
Meng, S., Jiang, X. Q., Gao, Y., Hai, H., & Hou, J. (2020). Performance Evaluation of Channel Decoder based on Recurrent Neural Network. Journal of Physics: Conference Series, 1438(1). https://doi.org/10.1088/1742-6596/1438/1/012001
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. http://arxiv.org/abs/1301.3781
Novitasari, F., & Dwifebri Purbolaksono, M. (2021). Sentiment Analysis Aspect Level on Beauty Product Reviews Using Chi-Square and Naïve Bayes. Journal of Data Science and Its Applications, 4(1), 18–030. https://doi.org/10.34818/JDSA.2021.4.72
Pratama, R. G. A., & Cahyono, N. (2024). Comparison of Deep Learning Methods on Sentiment Analysis Using Word Embedding. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 10(1), 1–8. https://doi.org/10.33480/jitk.v10i1.5280
Raihan, M. A., & Setiawan, E. B. (2022). Aspect Based Sentiment Analysis with FastText Feature Expansion and Support Vector Machine Method on Twitter. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(4), 591–598. https://doi.org/10.29207/resti.v6i4.4187
Ridwansyah, T. (2022). KLIK: Kajian Ilmiah Informatika dan Komputer Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier. Media Online, 2(5), 178–185. https://djournals.com/klik
Sachin, S., Tripathi, A., Mahajan, N., Aggarwal, S., & Nagrath, P. (2020). Sentiment Analysis Using Gated Recurrent Neural Networks. In SN Computer Science (Vol. 1, Issue 2). Springer. https://doi.org/10.1007/s42979-020-0076-y
Shaikh, Z. M., & Ramadass, S. (2024). Unveiling deep learning powers: LSTM, BiLSTM, GRU, BiGRU, RNN comparison. Indonesian Journal of Electrical Engineering and Computer Science, 35(1), 263–273. https://doi.org/10.11591/ijeecs.v35.i1.pp263-273
Sudhamathy, G., & Valliammal, N. (2023). Twitter Sentiment Analysis Using Clustering based Cuckoo Search Algorithm and Ensemble Classifier. Proceedings of the 2023 International Conference on Intelligent Systems for Communication, IoT and Security, ICISCoIS 2023, 212–217. https://doi.org/10.1109/ICISCoIS56541.2023.10100606
Suhartono, D., Purwandari, K., Jeremy, N. H., Philip, S., Arisaputra, P., & Parmonangan, I. H. (2022). Deep neural networks and weighted word embeddings for sentiment analysis of drug product reviews. Procedia Computer Science, 216, 664–671. https://doi.org/10.1016/j.procs.2022.12.182
Umer, M., Imtiaz, Z., Ahmad, M., Nappi, M., Medaglia, C., Choi, G. S., & Mehmood, A. (2023). Impact of convolutional neural network and FastText embedding on text classification. Multimedia Tools and Applications, 82(4), 5569–5585. https://doi.org/10.1007/s11042-022-13459-x
Utami, H. (2022). Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network. Indonesian Journal of Applied Statistics, 5(1), 31. https://doi.org/10.13057/ijas.v5i1.56825
Widyastuti, H., & Prastitya, T. A. (2020). Preferensi Konsumen Pengguna E-Commerce yang Memengaruhi Kesadaran akan Perlindungan Konsumen pada Generasi X. Jurnal Sistem Informasi Bisnis, 10(1), 10–19. https://doi.org/10.21456/vol10iss1pp10-19
Yahya, R. A., & Setiawan, E. B. (2022). Feature Expansion with FastText on Topic Classification Using the Gradient Boosted Decision Tree on Twitter. 2022 10th International Conference on Information and Communication Technology, ICoICT 2022, 322–327. https://doi.org/10.1109/ICoICT55009.2022.9914896
Yang, X.-S., & Deb, S. (2010). Engineering Optimisation by Cuckoo Search. http://arxiv.org/abs/1005.2908
Yin, X., Liu, C., & Fang, X. (2021). Sentiment analysis based on BiGRU information enhancement. Journal of Physics: Conference Series, 1748(3). https://doi.org/10.1088/1742-6596/1748/3/032054
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Rayhan Fadhil Rahmanda, Yuliant Sibaroni, Sri Suryani Prasetiyowati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.