Optimizing Marketplace Registration Page Design with Predictive Heatmap Analysis

Authors

  • Galih Bagaskoro Universitas Amikom Purwokerto
  • Rujianto Eko Saputro
  • Azhari Shouni Barkah Universitas Amikom Purwokerto
  • Agi Nanjar Universitas Amikom Purwokerto

DOI:

10.33395/sinkron.v9i2.14547

Keywords:

User Interface Design, Predictive Heatmap, Heuristic Evaluation, Gestalt Principles, Marketplace, Real-Time Validation, Visual Hierarchy, User Experience, Conversion

Abstract

Optimizing marketplace registration pages is crucial for improving user experience and conversion rates. This study evaluates the design of registration pages for four leading Indonesian marketplaces Tokopedia, Shopee, Blibli, and Lazada—using Predictive Heatmaps from UX Pilot alongside Heuristic Evaluation and Gestalt Principles. The analysis identifies key usability issues, such as distractions from branding elements, inconsistent visual hierarchy, and a lack of real-time validation and feedback mechanisms. Findings indicate that while branding elements effectively capture user attention, they often divert focus from essential features, a trend observed not only in these marketplaces but also in broader UI design contexts. such as Call-to-Action (CTA) buttons and registration forms. Shopee and Lazada successfully utilize high-contrast CTA buttons to direct user interaction, whereas Tokopedia and Blibli suffer from visual distractions caused by mascots and unnecessary decorative elements. Heatmap results also reveal inconsistent grouping of interface components, reducing page efficiency. To enhance user experience and conversion rates, recommendations include improving CTA button visibility through contrasting colors and strategic placement, minimizing decorative distractions, and implementing real-time validation and feedback. The application of Gestalt Principles further aids in optimizing interface organization by grouping related elements more effectively. This study underscores the importance of a structured design approach incorporating heuristic and predictive analytics to enhance the usability of online registration pages. Future research may explore the impact of interactive elements and A/B testing in refining registration interfaces.

GS Cited Analysis

Downloads

Download data is not yet available.

References

Courtemanche, F., Léger, P., Dufresne, A., Frédette, M., Labonté-LeMoyne, É., & Sénécal, S. (2017). Physiological Heatmaps: A Tool for Visualizing Users’ Emotional Reactions. Multimedia Tools and Applications, 77(9), 11547–11574. https://doi.org/10.1007/s11042-017-5091-1

Dey, P. P., Sinha, B. R., Amin, M. N., & Badkoobehi, H. (2019). Best Practices for Improving User Interface Design. International Journal of Software Engineering & Applications, 10(5), 71–83. https://doi.org/10.5121/ijsea.2019.10505

He, H., Xu, P., Jia, J., Sun, X., & Cao, J. (2024). Visual Assessment of Fashion Merchandising Based on Scene Saliency. International Journal of Clothing Science and Technology, 36(1), 153–167. https://doi.org/10.1108/ijcst-03-2022-0037

Herzberg, A., & Margulies, R. (2013). Forcing Johnny to Login Safely. Journal of Computer Security, 21(3), 393–424. https://doi.org/10.3233/jcs-130467

Khoiruddin, A. (2017). IMPLEMENTASI GESTALT PRINCIPLES PADA RANCANG BANGUN APLIKASI BERBASIS ANDROID CLEARROUTE.

Kok, E. T., Jarodzka, H., Sibbald, M., & Gog, T. van. (2023a). Did You Get That? Predicting Learners’ Comprehension of a Video Lecture From Visualizations of Their Gaze Data. Cognitive Science, 47(2). https://doi.org/10.1111/cogs.13247

Kok, E. T., Jarodzka, H., Sibbald, M., & Gog, T. van. (2023b). Did You Get That? Predicting Learners’ Comprehension of a Video Lecture From Visualizations of Their Gaze Data. Cognitive Science, 47(2). https://doi.org/10.1111/cogs.13247

Kusuma, H., Rue, F. S., Rumagit, R. Y., & Pratama, G. D. (2024). Usability evaluation of Ruangguru online learning mobile application using heuristic method. Procedia Computer Science, 245, 176–184. https://doi.org/10.1016/j.procs.2024.10.241

Martins, A. I., Andias, R., Azedo, D., Baptista, F., Ursine, B., Silva, A. G., & Rocha, N. P. (2024). Heuristic Evaluation of a Web-Based Application to Deliver a Home-Based Personalized Physical Exercise Program for Older Adults. Procedia Computer Science, 239, 158–165. https://doi.org/10.1016/j.procs.2024.06.158

Metsalu, T., & Vilo, J. (2015). ClustVis: A Web Tool for Visualizing Clustering of Multivariate Data Using Principal Component Analysis and Heatmap. Nucleic Acids Research, 43(W1), W566–W570. https://doi.org/10.1093/nar/gkv468

Nielsen, J. (1993). Usability engineering. Academic Press.

Palmer, S. (1999). Vision Science: From Photons to Phenomenology (Vol. 1).

Schiller, D., Huber, T. B., Dietz, M., & André, E. (2020). Relevance-Based Data Masking: A Model-Agnostic Transfer Learning Approach for Facial Expression Recognition. Frontiers in Computer Science, 2. https://doi.org/10.3389/fcomp.2020.00006

Superfast UX Design Powered by AI Author: UX Pilot Date: N.d. Accessed: 11 January 2025 URL: https://uxpilot.ai/. (n.d.).

Yuwono, A. R., & Anggraeni, N. S. (2023). Persepsi Elemen Visual dan Layout User Interface Aplikasi Alfa Gift dan Klik Indomaret. GESTALT, 5(1), 55–72. https://doi.org/10.33005/gestalt.v5i1.135

Zhou, H., & Duan, Y. (2022). Online channel structures for green products with reference greenness effect and consumer environmental awareness (CEA). Computers & Industrial Engineering, 170, 108350. https://doi.org/10.1016/j.cie.2022.108350

Downloads


Crossmark Updates

How to Cite

Bagaskoro, G., Eko Saputro, R., Shouni Barkah, A., & Nanjar, A. (2025). Optimizing Marketplace Registration Page Design with Predictive Heatmap Analysis. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(2), 569-577. https://doi.org/10.33395/sinkron.v9i2.14547